This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002499 Number of self-converse digraphs with n nodes. (Formerly M2875 N1156) 6
 1, 3, 10, 70, 708, 15224, 544152, 39576432, 5074417616, 1296033011648, 604178966756320, 556052774253161600, 954895322019762585664, 3224152068625567826724224, 20610090531322819956330186112 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 155, Table 6.6.1 (but the last entry is wrong). R. W. Robinson, personal communication. R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Andrew Howroyd, Table of n, a(n) for n = 1..50 (terms 1..28 from R. W. Robinson) F. Harary and E. M. Palmer, Enumeration of self-converse digraphs, Mathematika, 13 (1966), 151-157. PROG (PARI) permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j])*if(v[i]*v[j]%2==0, 2, 1))) + sum(i=1, #v, v[i]\2 + if(v[i]%2==0, (v[i]-2)\4*2+1))} a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Sep 18 2018 CROSSREFS Cf. A002500. Sequence in context: A080526 A232213 A143083 * A047833 A047834 A208999 Adjacent sequences:  A002496 A002497 A002498 * A002500 A002501 A002502 KEYWORD nonn,nice,changed AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Apr 17 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 13:16 EDT 2018. Contains 315389 sequences. (Running on oeis4.)