

A007285


Minimum diameter of an integral set of n points in the plane, not all on a line.
(Formerly M3295)


3



1, 4, 7, 8, 17, 21, 29, 40, 51, 63, 74, 91, 104, 121, 134, 153, 164, 196, 212, 228, 244, 272, 288, 319, 332, 364, 396, 437, 464, 494, 524, 553, 578, 608, 642, 667, 692, 754, 816, 897, 959, 1026, 1066, 1139, 1190, 1248, 1306, 1363
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,2


COMMENTS

An integral set is a set where all distances between points are integers.


REFERENCES

S. Kurz and A. Wassermann, On the minimum diameter of plane integral point sets, Ars Combinatoria, Vol. 101 (2011), 265287.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Jason Kimberley from Kurz and Laue, Table of n, a(n) for n = 3..122
H. Harborth, A. Kemnitz and M. Moeller, An upper bound for the minimum diameter of integral plane sets, Discr. Comput. Geom. 9 (1993), 427432.
Sascha Kurz and Reinhard Laue, Bounds for the minimum diameter of integral point sets, arXiv:0804.1296


CROSSREFS

Cf. A096872, A096873.
Sequence in context: A270216 A237599 A291750 * A225430 A239290 A057464
Adjacent sequences: A007282 A007283 A007284 * A007286 A007287 A007288


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Sascha Kurz, Sep 11 2003
396 from Sascha Kurz, Jul 13 2004


STATUS

approved



