The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002130 Generalized sum of divisors function. (Formerly M2238 N0888) 2
 1, -1, 1, 3, -2, 1, -5, 23, -25, 27, -49, 74, -62, 85, -132, 165, -195, 229, -240, 325, -374, 379, -469, 553, -590, 746, -805, 854, -1000, 1085, -1168, 1284, -1396, 1668, -1767, 1815, -2030, 2297, -2450, 2480, -2849, 3293, -3113, 3278, -3772, 4091, -4230, 4213, -4830, 5607, -5499, 5430, -6018, 6922, -6880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,4 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341. FORMULA G.f.: (t(1)^2-t(2))/2 where t(i) = Sum(x^(n*i)/(1+x^n)^(2*i),n=1..inf), i=1..2. - Vladeta Jovovic, Sep 21 2007 MATHEMATICA terms = 55; offset = 3; t[i_] := Sum[x^(n*i)/(1 + x^n)^(2*i), {n, 1, terms + 5}]; s = Series[(t[1]^2 - t[2])/2, {x, 0, terms + 5 }]; A002130 = CoefficientList[s, x][[offset + 1 ;; terms + offset]] (* Jean-François Alcover, Dec 11 2014, after Vladeta Jovovic *) CROSSREFS A diagonal of A060044. Sequence in context: A144252 A248033 A318254 * A089145 A324644 A134199 Adjacent sequences:  A002127 A002128 A002129 * A002131 A002132 A002133 KEYWORD sign,easy AUTHOR EXTENSIONS More terms from Naohiro Nomoto, Jan 24 2002 More terms from Vladeta Jovovic, Sep 21 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 09:12 EDT 2021. Contains 343110 sequences. (Running on oeis4.)