OFFSET
3,4
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
G.f.: (t(1)^2-t(2))/2 where t(i) = Sum_{n>=1} x^(n*i)/(1+x^n)^(2*i), i=1..2. - Vladeta Jovovic, Sep 21 2007
MATHEMATICA
terms = 55; offset = 3; t[i_] := Sum[x^(n*i)/(1 + x^n)^(2*i), {n, 1, terms + 5}]; s = Series[(t[1]^2 - t[2])/2, {x, 0, terms + 5 }]; A002130 = CoefficientList[s, x][[offset + 1 ;; terms + offset]] (* Jean-François Alcover, Dec 11 2014, after Vladeta Jovovic *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007
STATUS
approved