%I M2238 N0888
%S 1,1,1,3,2,1,5,23,25,27,49,74,62,85,132,165,195,229,240,325,
%T 374,379,469,553,590,746,805,854,1000,1085,1168,1284,1396,1668,
%U 1767,1815,2030,2297,2450,2480,2849,3293,3113,3278,3772,4091,4230,4213,4830,5607,5499,5430,6018,6922,6880
%N Generalized sum of divisors function.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s219.1.75">Divisors of numbers and their continuations in the theory of partitions</a>, Proc. London Math. Soc., 19 (1919), 75113; Coll. Papers II, pp. 303341.
%F G.f.: (t(1)^2t(2))/2 where t(i) = Sum(x^(n*i)/(1+x^n)^(2*i),n=1..inf), i=1..2.  _Vladeta Jovovic_, Sep 21 2007
%t terms = 55; offset = 3; t[i_] := Sum[x^(n*i)/(1 + x^n)^(2*i), {n, 1, terms + 5}]; s = Series[(t[1]^2  t[2])/2, {x, 0, terms + 5 }]; A002130 = CoefficientList[s, x][[offset + 1 ;; terms + offset]] (* _JeanFrançois Alcover_, Dec 11 2014, after _Vladeta Jovovic_ *)
%Y A diagonal of A060044.
%K sign,easy
%O 3,4
%A _N. J. A. Sloane_.
%E More terms from _Naohiro Nomoto_, Jan 24 2002
%E More terms from _Vladeta Jovovic_, Sep 21 2007
