login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318254 Associated Omega numbers of order 2, triangle T(n,k) read by rows for n >= 0 and 0 <= k <= n. 2
1, 1, 1, 1, 3, -2, 1, 5, -20, 16, 1, 7, -70, 336, -272, 1, 9, -168, 2016, -9792, 7936, 1, 11, -330, 7392, -89760, 436480, -353792, 1, 13, -572, 20592, -466752, 5674240, -27595776, 22368256, 1, 15, -910, 48048, -1750320, 39719680, -482926080, 2348666880, -1903757312 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The Omega polynomials A318146 are defined by the recurrence P(m, 0) = 1 and for n>=1 P(m, n) = x * Sum_{k=0..n-1} binomial(m*n-1, m*k)*t(m, n-k)*P(m, k) where t(m, n) are the generalized tangent numbers A318253. The Omega numbers are the coefficients of the Omega polynomials. The associated Omega numbers are the weights of P(m, k) in the recurrence formula.

LINKS

Table of n, a(n) for n=0..44.

FORMULA

T(m, n, k) = binomial(m*n-1, m*(n-k))*A318253(m, k) for k>0 and 1 for k=0. We consider here the case m=2.

EXAMPLE

Triangle starts:

[0] [1]

[1] [1,  1]

[2] [1,  3,   -2]

[3] [1,  5,  -20,    16]

[4] [1,  7,  -70,   336,    -272]

[5] [1,  9, -168,  2016,   -9792,    7936]

[6] [1, 11, -330,  7392,  -89760,  436480,   -353792]

[7] [1, 13, -572, 20592, -466752, 5674240, -27595776, 22368256]

MAPLE

# The function TNum is defined in A318253.

T := (m, n, k) -> `if`(k=0, 1, binomial(m*n-1, m*(n-k))*TNum(m, k)):

for n from 0 to 6 do seq(T(2, n, k), k=0..n) od;

PROG

(Sage)

def AssociatedOmegaNumberTriangle(m, len):

    R = ZZ[x]; B = [1]*len; L = [R(1)]*len; T = [[1]]

    for k in (1..len-1):

        s = x*sum(binomial(m*k-1, m*(k-j))*B[j]*L[k-j] for j in (1..k-1))

        B[k] = c = 1 - s.subs(x=1); L[k] = R(expand(s + c*x))

        T.append([1] + [binomial(m*k-1, m*(k-j))*B[j] for j in (1..k)])

    return T

A318254Triangle = lambda dim: AssociatedOmegaNumberTriangle(2, dim)

print A318254Triangle(8)

CROSSREFS

Even indexed rows of A220901 (up to signs).

T(n, 0) = A005408, T(n, n) = A220901 (up to signs), row sums are A040000.

Cf. A318146, A318253, A318255 (m=3).

Sequence in context: A105954 A144252 A248033 * A002130 A089145 A324644

Adjacent sequences:  A318251 A318252 A318253 * A318255 A318256 A318257

KEYWORD

sign,tabl

AUTHOR

Peter Luschny, Aug 26 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:00 EST 2019. Contains 329836 sequences. (Running on oeis4.)