This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003447 Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals rooted at a cell up to rotation and reflection. (Formerly M1772) 5
 1, 2, 7, 26, 108, 434, 1765, 7086, 28384, 113092, 449582, 1783092, 7062611, 27944394, 110494113, 436699670, 1725474562, 6816591452, 26927828642, 106375090796, 420248084468, 1660408588852, 6561147261682, 25930381015756, 102496390643352, 405212762977544 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 COMMENTS Number of dissections of regular n-gon into n-3 polygons with reflection and rooted at a cell. - Sean A. Irvine, May 13 2015 The dissection will always be composed of one quadrilateral and n-4 triangles. - Andrew Howroyd, Nov 24 2017 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Andrew Howroyd, Table of n, a(n) for n = 4..200 P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601. C. R. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388. PROG (PARI) DissectionsModDihedralRooted(v)={my(n=#v); my(q=vector(n)); q[1]=serreverse(x-sum(i=3, #v, x^i*v[i])/x + O(x*x^n)); for(i=2, n, q[i]=q[i-1]*q[1]); my(vars=variables(q[1])); my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars))); my(R=sum(i=1, (#v-1)\2, v[2*i+1]*u(2, i)), Q=sum(i=2, #v\2, v[2*i]*u(2, i-1)), T=sum(i=3, #v, my(c=v[i]); if(c, c*sumdiv(i, d, eulerphi(d)*u(d, i/d))/i))); my(p=O(x*x^n) + (R*(x+R)/(1-Q) + Q*(u(2, 1)+(x+R)^2/(1-Q)^2)/2 + T)/2); vector(n, i, polcoeff(p, i))} my(v=DissectionsModDihedralRooted(apply(i->if(i>=3&&i<=4, y^(i-3)+O(y^2)), [1..25]))); apply(p->polcoeff(p, 1), v[4..#v]) CROSSREFS Cf. A003448, A003452, A003456. Sequence in context: A006603 A080244 A124542 * A150569 A150570 A150571 Adjacent sequences:  A003444 A003445 A003446 * A003448 A003449 A003450 KEYWORD nonn AUTHOR EXTENSIONS More terms from Sean A. Irvine, May 13 2015 Name clarified by Andrew Howroyd, Nov 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 17:43 EDT 2019. Contains 328022 sequences. (Running on oeis4.)