This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032741 a(0) = 0; for n > 0, a(n) = number of proper divisors of n (divisors of n which are less than n). 140
 0, 0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 11, 1, 3, 5, 6, 3, 7, 1, 5, 3, 7, 1, 11, 1, 3, 5, 5, 3, 7, 1, 9, 4, 3, 1, 11, 3, 3, 3, 7, 1, 11, 3, 5, 3, 3, 3, 11, 1, 5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of d < n which divide n. Call an integer k between 1 and n a "semi-divisor" of n if n leaves a remainder of 1 when divided by k, i.e., n == 1 (mod k). a(n) gives the number of semi-divisors of n+1. - Joseph L. Pe, Sep 11 2002 a(n+1) is also the number of k, 0 <= k <= n-1, such that C(n,k) divides C(n,k+1). - Benoit Cloitre, Oct 17 2002 a(n+1) is also the number of factors of the n-th degree polynomial x^n + x^(n-1) + x^(n-2) + ... + x^2 + x + 1. Example: 1 + x + x^2 + x^3 = (1+x)(1+x^2) implies a(4)=2. a(n) is also the number of factors of the n-th Fibonacci polynomial. - T. D. Noe, Mar 09 2006 Number of partitions of n into 2 parts with the second dividing the first. - Franklin T. Adams-Watters, Sep 20 2006 Number of partitions of n+1 into exactly one q and at least one q+1. Example: a(12)=5; indeed, we have 13 = 7 + 6 = 5 + 4 + 4 = 4 + 3 + 3 + 3 = 3 + 2 + 2 + 2 + 2 + 2 = 2 + 11*1. Differences of A002541. - George Beck, Feb 12 2012 For n > 1: number of ones in row n+1 of triangle A051778. - Reinhard Zumkeller, Dec 03 2014 For n > 0, a(n) is the number of strong divisors of n. - Omar E. Pol, May 03 2015 a(n) is also the number of factors of the (n-1)-th degree polynomial ((x+1)^n-1)/x. Example: for n=6, ((x+1)^6-1)/x) = x^5 + 6*x^4 + 15*x^3 + 20*x^2 + 15*x + 6 = (2+x)(1+x+x^2)(3+3x+x^2) implies a(6)=3. - Federico Provvedi, Oct 09 2018 REFERENCES André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, page 5. LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Proper divisors FORMULA a(n) = tau(n)-1 = A000005(n)-1. Cf. A039653. G.f.: Sum_{n>=1} x^(2*n)/(1-x^n). - Michael Somos, Apr 29, 2003 G.f.: Sum_{i>=1} (1-x^i+x^(2*i))/(1-x^i). - Jon Perry, Jul 03 2004 a(n) = Sum_{k=1..floor(n/2)} A051731(n-k,k). - Reinhard Zumkeller, Nov 01 2009 G.f.: 2*Sum_{n>=1} Sum_{d|n} log(1 - x^(n/d))^(2*d) / (2*d)!. - Paul D. Hanna, Aug 21 2014 Dirichlet g.f.: zeta(s)*(zeta(s)-1). - Geoffrey Critzer, Dec 06 2014 a(n) = Sum_{k=1..n-1} binomial((n-1) mod k, k-1). - Wesley Ivan Hurt, Sep 26 2016 a(n) = Sum_{i=1..n-1} floor(n/i)-floor((n-1)/i). - Wesley Ivan Hurt, Nov 15 2017 a(n) = Sum_{i=1..n-1} 1-sign(i mod (n-i)). - Wesley Ivan Hurt, Sep 27 2018 EXAMPLE a(6) = 3 since the proper divisors of 6 are 1, 2, 3. MAPLE A032741 := proc(n)     if n = 0 then         0 ;     else         numtheory[tau](n)-1 ;     end if; end proc: # R. J. Mathar, Feb 03 2013 MATHEMATICA Prepend[DivisorSigma[0, Range]-1, 0] (* Jayanta Basu, May 25 2013 *) PROG (PARI) a(n) = if(n<1, 0, numdiv(n)-1) (PARI) {a(n)=polcoeff(2*sum(m=1, n\2+1, sumdiv(m, d, log(1-x^(m/d) +x*O(x^n) )^(2*d)/(2*d)!)), n)} \\ Paul D. Hanna, Aug 21 2014 (Haskell) a032741 n = if n == 0 then 0 else a000005 n - 1 -- Reinhard Zumkeller, Jul 31 2014 (GAP) Concatenation(, List([1..100], n->Tau(n)-1)); # Muniru A Asiru, Oct 09 2018 CROSSREFS Column 2 of A122934. Cf. A003238, A001065, A027749, A027751 (list of proper divisors). Cf. A051778, A070824. Sequence in context: A325770 A305611 A325765 * A319149 A321887 A046051 Adjacent sequences:  A032738 A032739 A032740 * A032742 A032743 A032744 KEYWORD nonn,easy AUTHOR Patrick De Geest, May 15 1998 EXTENSIONS Typos in definition corrected by Omar E. Pol, Dec 13 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 07:11 EDT 2019. Contains 328336 sequences. (Running on oeis4.)