login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027749 Take the list 1,2,3,4,... and replace each n with all d > 1 that divide n. 4
1, 2, 3, 2, 4, 5, 2, 3, 6, 7, 2, 4, 8, 3, 9, 2, 5, 10, 11, 2, 3, 4, 6, 12, 13, 2, 7, 14, 3, 5, 15, 2, 4, 8, 16, 17, 2, 3, 6, 9, 18, 19, 2, 4, 5, 10, 20, 3, 7, 21, 2, 11, 22, 23, 2, 3, 4, 6, 8, 12, 24, 5, 25, 2, 13, 26, 3, 9, 27, 2, 4, 7, 14, 28, 29, 2, 3, 5, 6, 10, 15, 30, 31, 2, 4, 8, 16, 32, 3, 11, 33, 2, 17, 34, 5, 7, 35 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(A002541(n)+1)=n; a(A002541(n)+2)=A020639(n+1). - Reinhard Zumkeller, Nov 22 2003

Seen as a triangle read by rows: T(1,1)=1 and T(n,k)=A027750(n,k+1) for n>1, 1<=k<A000005(n). - Reinhard Zumkeller, Oct 01 2012

LINKS

Reinhard Zumkeller, Rows n = 1..250 of triangle, flattened

MATHEMATICA

Join[{1}, Flatten[Rest[Divisors[#]]&/@Range[40]]] (* Harvey P. Dale, Jun 28 2011 *)

PROG

(Haskell)

a027749 n k = a027749_tabf !! (n-1) !! (k-1)

a027749_row n = a027749_tabf !! n

a027749_tabf = [1] : map tail (tail a027750_tabf)

-- Reinhard Zumkeller, Oct 01 2012, Oct 19 2011, Jul 11 2011

CROSSREFS

Cf. A032741, A027750.

Sequence in context: A071515 A121998 A120499 * A226208 A214540 A214595

Adjacent sequences:  A027746 A027747 A027748 * A027750 A027751 A027752

KEYWORD

nonn,easy,nice,tabf

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

Keyword tabf added by Reinhard Zumkeller, Oct 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 14 21:23 EST 2017. Contains 296020 sequences.