login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002295 Number of dissections of a polygon: binomial(6n,n)/(5n+1).
(Formerly M4260 N1780)
36
1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, 115607310, 1478314266, 19180049928, 251857119696, 3340843549855, 44700485049720, 602574657427116, 8175951659117794, 111572030260242090, 1530312970340384580, 21085148778264281865, 291705220704719165526 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From Wolfdieter Lang, Sep 14 2007: (Start)

a(n), n >= 1, enumerates sextic (6-ary) trees (rooted, ordered, incomplete) with n vertices (including the root).

Pfaff-Fuss-Catalan sequence C^{m}_n for m=6. See the Graham et al. reference, p. 347. eq. 7.66. See also the Pólya-Szegő reference.

Also 6-Raney sequence. See the Graham et al. reference, p. 346-7. (End)

REFERENCES

Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.

G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.

Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Editor's note: "Über die Bestimmung der Anzahl der verschiedenen Arten, auf welche sich ein n-Eck durch Diagonalen in lauter m-Ecke zerlegen laesst, mit Bezug auf einige Abhandlungen der Herren Lamé, Rodrigues, Binet, Catalan und Duhamel in dem Journal de Mathématiques pures et appliquées, publié par Joseph Liouville. T. III. IV.", Archiv der Mathematik u. Physik, 1 (1841), pp. 193ff; see especially p. 198.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

V. E. Adler, A. B. Shabat, Volterra chain and Catalan numbers, arXiv:1810.13198 [nlin.SI], 2018.

Wun-Seng Chou, Tian-Xiao He, Peter J.-S. Shiue, On the Primality of the Generalized Fuss-Catalan Numbers, J. Int. Seqs., Vol. 21 (2018), #18.2.1.

F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974

F. Harary, E. M. Palmer, and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.

V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 288

R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.

B. Sury, Generalized Catalan numbers: linear recursion and divisibility, JIS 12 (2009), Article 09.7.5.

L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (5).

FORMULA

O.g.f.: A(x) = 1 + x*A(x)^6 = 1/(1-x*A(x)^5).

a(n) = binomial(6*n,n-1)/n, n >= 1, a(0)=1. From the Lagrange series of the o.g.f. A(x) with its above given implicit equation.

a(n) = upper left term in M^n, M = the production matrix:

   1,  1

   5,  5,  1

  15, 15,  5,  1

  35, 35, 15,  5,  1

  ...

(where (1, 5, 15, 35, ...) = A000332 starting with 1. - Gary W. Adamson, Jul 08 2011

a(n) are special values of Jacobi polynomials, in Maple notation:

  a(n) = JacobiP(n-1, 5*n+1, -n, 1)/n, n=1, 2, ... . - Karol A. Penson, Mar 17 2015

a(n) = binomial(6*n+1, n)/(6*n+1) = A062993(n+4,4). - Robert FERREOL, Apr 03 2015

a(0) = 1; a(n) = Sum_{i1+i2+...+i6=n-1} a(i1)*a(i2)*...*a(i6) for n>=1. - Robert FERREOL, Apr 03 2015

5*n*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) - 72*(6*n-5)*(6*n-1)*(3*n-1)*(2*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Sep 06 2016

From Ilya Gutkovskiy, Jan 15 2017: (Start)

O.g.f.: 5F4(1/6,1/3,1/2,2/3,5/6; 2/5,3/5,4/5,6/5; 46656*x/3125).

E.g.f.: 5F5(1/6,1/3,1/2,2/3,5/6; 2/5,3/5,4/5,1,6/5; 46656*x/3125).

a(n) ~ 3^(6*n+1/2)*64^n/(sqrt(Pi)*5^(5*n+3/2)*n^(3/2)). (End)

EXAMPLE

There are a(2)=6 sextic trees (vertex degree <= 6 and 6 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 6 trees yields 6*6 + binomial(6,2) = 51 = a(3) such trees.

MAPLE

A002295:=n->binomial(6*n, n)/(5*n + 1); seq(A002295(n), n=0..20); # Wesley Ivan Hurt, Jan 29 2014

n:=20:G:=series(RootOf(g = 1+x*g^6, g), x=0, n+1):seq(coeff(G, x, k), k=0..n); # Robert FERREOL, Apr 03 2015

MATHEMATICA

Table[Binomial[6n, n]/(5n + 1), {n, 0, 20}] (* Stefan Steinerberger, Apr 06 2006 *)

PROG

(MAGMA) [Binomial(6*n, n)/(5*n + 1): n in [0..20]]; // Vincenzo Librandi, Mar 17 2015

(PARI) A002295(n)=binomial(6*n, n)/(5*n+1) \\ M. F. Hasler, Apr 08 2015

(GAP) List([0..22], n->Binomial(6*n, n)/(5*n+1)); # Muniru A Asiru, Nov 01 2018

CROSSREFS

Cf. A002294, A002296.

Fifth column of triangle A062993.

Sequence in context: A180901 A199685 A225615 * A215159 A263895 A027393

Adjacent sequences:  A002292 A002293 A002294 * A002296 A002297 A002298

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Stefan Steinerberger, Apr 06 2006

Edited by M. F. Hasler, Apr 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 03:23 EST 2019. Contains 329310 sequences. (Running on oeis4.)