

A003521


Values of m in the discriminant D = 4*m leading to a new minimum of the Lfunction of the Dirichlet series L(1) = Sum_{k>=1} Kronecker(D,k)/k.
(Formerly M4418)


4



1, 7, 37, 58, 163, 4687, 30178, 30493, 47338, 83218, 106177, 134773, 288502, 991027
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

In Shanks's Table 3 "Lochamps, 4N = Discriminant", N = 1 is omitted. Shanks describes the table as being tentative after N = 47338. In Buell's Table 7 "Successive minima of L(1) for even discriminants" several omissions and extra terms are present for N < 30178, but the terms above are confirmed by an independent computation.  Hugo Pfoertner, Feb 03 2020


REFERENCES

D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..14.
Duncan A. Buell, Small class numbers and extreme values of Lfunctions of quadratic fields, Math. Comp., 31 (1977), 786796 (Table 7, page 791).
D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc. (Annotated scanned copy)


EXAMPLE

With L1(k) = L(1) for D=4*k:
a(1) = 1: L1(1) ~= 0.785398... = Pi/4;
L1(2) = 1.1107, L1(3) = 0.9069, L1(4) = 0.7854, L1(5) = 1.4050, L1(6) = 1.2825, all >= a(1);
a(2) = 7 because L1(7) = 0.5937 < a(1);
a(3) = 37 because L1(k) > a(2) for 8 <= k <= 36, L1(37) = 0.51647 < a(2).


CROSSREFS

Cf. A003420.
Sequence in context: A235463 A127313 A217561 * A155943 A078626 A093389
Adjacent sequences: A003518 A003519 A003520 * A003522 A003523 A003524


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane


EXTENSIONS

New title, a(1) prepended and a(10)a(14) from Hugo Pfoertner, Feb 03 2020


STATUS

approved



