login
A006451
Numbers k such that k*(k+1)/2 + 1 is a square.
(Formerly M1472)
53
0, 2, 5, 15, 32, 90, 189, 527, 1104, 3074, 6437, 17919, 37520, 104442, 218685, 608735, 1274592, 3547970, 7428869, 20679087, 43298624, 120526554, 252362877, 702480239, 1470878640, 4094354882, 8572908965, 23863649055, 49966575152
OFFSET
0,2
REFERENCES
A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Problem J/A2, Jul/August 1973 pp. 73-74; solution Jan 1974 (see link).
Jeffrey Shallit, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. J. Gottlieb, How four dogs meet in a field, etc. (scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Hermann Stamm-Wilbrandt, 4 interlaced bisections
FORMULA
G.f.: x*(-2-3*x+2*x^2+x^3)/(x-1)/(x^2+2*x-1)/(x^2-2*x-1). Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
a(n) = 6*a(n-2) - a(n-4) + 2 with a(0)=0, a(1)=2, a(2)=5, a(3)=15. - Zak Seidov, Apr 15 2008
a(n) = 3*a(n-2) + 4*sqrt((a(n-2)^2 + a(n-2))/2 + 1) + 1 with a(0) = 0, a(1) = 2. - Raphie Frank, Feb 02 2013
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5); a(0)=0, a(1)=2, a(2)=5, a(3)=15, a(4)=32. - Harvey P. Dale, Jul 17 2013
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - Hermann Stamm-Wilbrandt, Aug 26 2014
a(2*n+1) = A098790(2*n+1). - Hermann Stamm-Wilbrandt, Aug 26 2014
a(2*n) = A098586(2*n-1), for n>0. - Hermann Stamm-Wilbrandt, Aug 27 2014
a(n) = 8*sqrt(T(a(n-2)) + 1) + a(n-4) where T(a(n)) = A000217(a(n)), and a(-1) = -1, a(0)=0, a(1)=2, a(2)=5. - Vladimir Pletser, Apr 29 2017
MAPLE
N:= 100: # to get a(0) to a(N)
A[0]:= 0: A[1]:= 2: A[2]:= 5: A[3]:= 15:
for n from 4 to N do A[n]:= 6*A[n-2] - A[n-4] + 2 od:
seq(A[n], n=0..N); # Robert Israel, Aug 26 2014
MATHEMATICA
LinearRecurrence[{1, 6, -6, -1, 1}, {0, 2, 5, 15, 32}, 30] (* Harvey P. Dale, Jul 17 2013 *)
Select[Range[10^6], IntegerQ@ Sqrt[# (# + 1)/2 + 1] &] (* Michael De Vlieger, Apr 25 2017 *)
PROG
(PARI) for(n=1, 10000, t=n*(n+1)/2+1; if(issquare(t), print1(n, ", "))) \\ Joerg Arndt, Oct 10 2009
(Haskell)
a006451 n = a006451_list !! n
a006451_list = 0 : 2 : 5 : 15 : map (+ 2)
(zipWith (-) (map (* 6) (drop 2 a006451_list)) a006451_list)
-- Reinhard Zumkeller, Jan 10 2012
CROSSREFS
Cf. numbers m such that k*A000217(m)+1 is a square: this sequence for k=1; m=0 for k=2; A233450 for k=3; A001652 for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013
Sequence in context: A077686 A034499 A299159 * A226103 A000962 A118387
KEYWORD
nonn,easy
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Edited by N. J. A. Sloane, Oct 24 2009, following discussions by several correspondents in the Sequence Fans Mailing List, Oct 10 2009
STATUS
approved