login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006450 Primes with prime subscripts.
(Formerly M2477)
147
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1031, 1063, 1087, 1153, 1171, 1201, 1217, 1297, 1409, 1433, 1447, 1471 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sometimes called Prime-Index-Primes or PIPs. - Jonathan Vos Post, Jul 19 2008

A000040 = A006450 U A007821. - Juri-Stepan Gerasimov, Sep 24 2009

Subsequence of A175247 (primes (A000040) with noncomposite (A008578) subscripts), a(n) = A175247(n+1). - Jaroslav Krizek, Mar 13 2010

Primes p such that p and pi(p) are both primes. - Juri-Stepan Gerasimov, Jul 14 2011

Sum_{n>=1} 1/a(n) converges. In fact, Sum_{n>N} 1/a(n) < 1/log(N), by the integral test. - Jonathan Sondow, Jul 11 2012

The number of such primes not exceeding x > 0 is pi(pi(x)). I conjecture that the sequence a(n)^(1/n) (n = 1,2,3,...) is strictly decreasing. This is an analog of the Firoozbakht conjecture on primes. - Zhi-Wei Sun, Aug 17 2015

Lim_{n->infinity}a(n)/(n*(log(n))^2) = 1. Proof: By Cipolla's asymptotic formula, prime(n) ~ L(n) + R(n), where L(n)/n = log(n) + log(log(n)) - 1 and R(n)/n decreases logarithmically to 0. Hence, for large n, a(n) = prime(prime(n)) ~ L(L(n)+R(n)) + R(L(n)+R(n)) = n*(log(n))^2 + r(n), where r(n) grows as O(n*log(n)*log(log(n))). The rest of the proof is trivial. The convergence is very slow: for k = 1,2,3,4,5,6, sqrt(a(10^k)/10^k)/log(10^k) evaluates to 2.055, 1.844, 1.695, 1.611, 1.545, and 1.493, respectively. - Stanislav Sykora, Dec 09 2015

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

J. S. Kimberley, Table of n, a(n) for n = 1..100000

R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv preprint arXiv:1405.2900 [math.GM], 2014.

Jonathan Bayless, Dominic Klyve, and Tomás Oliveira e Silva, New Bounds and Computations on Prime-Indexed Primes, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A43, 2013.

K. A. Broughan, A. R. Barnett, On the subsequence of primes having prime subscripts, JIS 12 (2009) 09.2.3.

Paul Cooijmans, Numbers.

Paul Cooijmans, Short Test For Genius.

R. E. Dressler and S. T. Parker, Primes with a prime subscript, J. ACM 22 (1975) 380-381.

N. Fernandez, An order of primeness, F(p)

N. Fernandez, An order of primeness [cached copy, included with permission of the author]

N. Fernandez, More terms of this and other sequences related to A049076.

A. B. Frizell, The permutations of the natural numbers can not be well ordered, Bull. Amer. Math. Soc. 22 (1915), no. 2, 71-73.

Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012.

Eric Weisstein's World of Mathematics, Prime formulas, see Cipolla formula.

FORMULA

a(n) = prime(prime(n)) = A000040(A000040(n)). - Juri-Stepan Gerasimov, Sep 24 2009

a(n) > n*(log(n))^2, as prime(n) > n*log(n) by Rosser's theorem. - Jonathan Sondow, Jul 11 2012

a(n)/log(a(n)) ~ prime(n). - Thomas Ordowski, Mar 30 2015

EXAMPLE

a(5) = 31 because a(5) = p(p(5)) = p(11) = 31.

MAPLE

seq(ithprime(ithprime(i)), i=1..50); # Uli Baum (Uli_Baum(AT)gmx.de), Sep 05 2007

# For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016

MATHEMATICA

Table[ Prime[ Prime[ n ] ], {n, 100} ]

PROG

(MAGMA) [ NthPrime(NthPrime(n)): n in [1..51] ]; // Jason Kimberley, Apr 02 2010

(PARI) i=0; forprime(p=2, 1e4, if(isprime(i++), print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011

(PARI) a=vector(100000, n, prime(prime(n))) \\ Stanislav Sykora, Dec 09 2015

(Haskell)

a006450 = a000040 . a000040

a006450_list = map a000040 a000040_list

-- Reinhard Zumkeller, Jan 12 2013

CROSSREFS

Primes for which A049076 > 1.

Cf. A049076, A007821, A000040, A038580, A049090, A049203, A049202, A057849, A057850, A057851, A057847, A058332, A093047.

Cf. A185723 and A214296 for numbers and primes that are sums of distinct a(n); cf. A213356 and A185724 for those that are not.

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Sequence in context: A278053 A174916 A108542 * A085918 A267094 A146622

Adjacent sequences:  A006447 A006448 A006449 * A006451 A006452 A006453

KEYWORD

nonn,easy,nice,changed

AUTHOR

Jeffrey Shallit, Nov 25 1975

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 11:13 EST 2016. Contains 278750 sequences.