login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006450 Primes with prime subscripts.
(Formerly M2477)
128
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1031, 1063, 1087, 1153, 1171, 1201, 1217, 1297, 1409, 1433, 1447, 1471 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sometimes called Prime-Index-Primes or PIPs. - Jonathan Vos Post, Jul 19 2008

A000040 = A006450 U A007821. - Juri-Stepan Gerasimov, Sep 24 2009

Subsequence of A175247 (primes (A000040) with noncomposite (A008578) subscripts), a(n) = A175247(n+1). - Jaroslav Krizek, Mar 13 2010

Primes p such that p and pi(p) are both primes. - Juri-Stepan Gerasimov, Jul 14 2011

Sum_{n=1..infinity} 1/a(n) converges. In fact, sum_{n>N} 1/a(n) < 1/log(N), by the integral test. - Jonathan Sondow, Jul 11 2012

The number of such primes not exceeding x > 0 is pi(pi(x)). I conjecture that the sequence a(n)^(1/n) (n = 1,2,3,...) is strictly decreasing. This is an analog of the Firoozbakht conjecture on primes. - Zhi-Wei Sun, Aug 17, 2015

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

J. S. Kimberley, Table of n, a(n) for n = 1..100000

R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv preprint arXiv:1405.2900, 2014

Jonathan Bayless, Dominic Klyve, and Tomás Oliveira e Silva, New Bounds and Computations on Prime-Indexed Primes, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A43, 2013.

Paul Cooijmans, Numbers.

Paul Cooijmans, Short Test For Genius.

R. E. Dressler and S. T. Parker, Primes with a prime subscript, J. ACM 22 (1975) 380-381.

N. Fernandez, An order of primeness, F(p)

N. Fernandez, An order of primeness [cached copy, included with permission of the author]

N. Fernandez, More terms of this and other sequences related to A049076.

A. B. Frizell, The permutations of the natural numbers can not be well ordered, Bull. Amer. Math. Soc. 22 (1915), no. 2, 71-73.

Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732, 2012.

FORMULA

a(n) = prime(prime(n)) = A000040(A000040(n)). - Juri-Stepan Gerasimov, Sep 24 2009

a(n) > n*(log(n))^2, as prime(n) > n*log(n) by Rosser's theorem. - Jonathan Sondow, Jul 11 2012

a(n)/log(a(n)) ~ prime(n). - Thomas Ordowski, Mar 30 2015

EXAMPLE

a(5)=31 because a(5)=p(p(5))=p(11)=31.

MAPLE

seq(ithprime(ithprime(i)), i=1..50); # Uli Baum (Uli_Baum(AT)gmx.de), Sep 05 2007

MATHEMATICA

Table[ Prime[ Prime[ n ] ], {n, 100} ]

PROG

(MAGMA) [ NthPrime(NthPrime(n)): n in [1..51] ]; // Jason Kimberley, Apr 02 2010

(PARI) i=0; forprime(p=2, 1e4, if(isprime(i++), print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011

(Haskell)

a006450 = a000040 . a000040

a006450_list = map a000040 a000040_list

-- Reinhard Zumkeller, Jan 12 2013

CROSSREFS

Primes for which A049076 > 1.

Cf. A049076, A007821, A000040, A038580, A049090, A049203, A049202, A057849, A057850, A057851, A057847, A058332, A093047.

Cf. A185723 and A214296 for numbers and primes that are sums of distinct a(n); cf. A213356 and A185724 for those that are not. - Jonathan Sondow, Jul 11 2012

Sequence in context: A087732 A174916 A108542 * A085918 A146622 A124179

Adjacent sequences:  A006447 A006448 A006449 * A006451 A006452 A006453

KEYWORD

nonn,easy,nice

AUTHOR

Jeffrey Shallit, Nov 25 1975

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 3 13:05 EDT 2015. Contains 261320 sequences.