|
|
A006448
|
|
Number of n-element algebras with 1 binary operator and 1 constant (pointed groupoids).
(Formerly M5029)
|
|
2
|
|
|
1, 16, 9882, 715860992, 12417636281312500, 85953540009068492207916672, 356838302112667713247240882121025536249, 1245456693529103515171728481423145699858332531028201472
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
M. A. Harrison, The number of isomorphism types of finite algebras, Proc. Amer. Math. Soc., 17 (1966), 731-737.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=1..8.
Index entries for sequences related to groupoids
|
|
FORMULA
|
F[ n ]=n(1)*prod{i, j >= 1}(sum{d|[ i, j ]}(d*n(d))^((i, j)*n(i)*n(j)))
a(n) = sum {1*s_1+2*s_2+...=n} (fix A[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fix A[s_1, s_2, ...] = s_1 * prod {i, j>=1} ( (sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j))
a(n) asymptotic to n^(n^2+1)/n!
|
|
CROSSREFS
|
Cf. A001329.
Sequence in context: A151641 A265240 A221137 * A017092 A265634 A191945
Adjacent sequences: A006445 A006446 A006447 * A006449 A006450 A006451
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
Formula and more terms from Christian G. Bower, May 08 1998, Dec 03 2003.
|
|
STATUS
|
approved
|
|
|
|