This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003657 Discriminants of imaginary quadratic fields, negated. (Formerly M2332) 18
 3, 4, 7, 8, 11, 15, 19, 20, 23, 24, 31, 35, 39, 40, 43, 47, 51, 52, 55, 56, 59, 67, 68, 71, 79, 83, 84, 87, 88, 91, 95, 103, 104, 107, 111, 115, 116, 119, 120, 123, 127, 131, 132, 136, 139, 143, 148, 151, 152, 155, 159, 163, 164, 167, 168, 179, 183, 184, 187, 191 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Negative of fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 223-234. See 4*A089269 = A191483 for even a(n) and A039957 for odd a(n). - Wolfdieter Lang, Nov 07 2003 All prime numbers in the set of the absolute values of negative fundamental discriminants are Gaussian primes (A002145). - Paul Muljadi, Mar 29 2008 Complement: 1, 2, 5, 6, 9, 10, 12, 13, 14, 16, 17, 18, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, ..., . - Robert G. Wilson v, Jun 04 2011 REFERENCES D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989. H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514. P. Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..3000 S. R. Finch, Class number theory [Cached copy, with permission of the author] Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013. Eric Weisstein's World of Mathematics, Class Number, Dirichlet L-Series, Fundamental Discriminant MATHEMATICA FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via _Eric E. Weisstein_ *); -Select[-Range@ 194, FundamentalDiscriminantQ] (* Robert G. Wilson v, Jun 01 2011 *) PROG (PARI) ok(n)={isfundamental(-n)} \\ Andrew Howroyd, Jul 20 2018 (PARI) ok(n)={n<>1 && issquarefree(n/2^valuation(n, 2)) && (n%4==3 || n%16==8 || n%16==4)} \\ Andrew Howroyd, Jul 20 2018 CROSSREFS Cf. A002145, A003658, Odd terms = A039957, even terms = A191483. Sequence in context: A173467 A050122 A179016 * A003644 A196923 A192051 Adjacent sequences:  A003654 A003655 A003656 * A003658 A003659 A003660 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 12:06 EST 2018. Contains 318229 sequences. (Running on oeis4.)