login
A005443
a(n) = n! * Fibonacci(n).
(Formerly M2034)
11
0, 1, 2, 12, 72, 600, 5760, 65520, 846720, 12337920, 199584000, 3552595200, 68976230400, 1450895846400, 32866215782400, 797681364480000, 20650793619456000, 568032822669312000, 16543733655601152000, 508598164809326592000, 16458582085314969600000
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. R. J. Asveld & N. J. A. Sloane, Correspondence, 1987
P. R. J. Asveld, Fibonacci-like differential equations with a polynomial nonhomogeneous term, Fib. Quart. 27 (1989), 303-309.
FORMULA
a(n) = A039948(n, 1).
E.g.f.: x/(1-x-x^2). - Geoffrey Critzer, Sep 01 2013
a(n) = n*a(n-1) + n*(n-1)*a(n-2). - G. C. Greubel, Nov 20 2022
MAPLE
ZL:=[S, {a = Atom, b = Atom, S = Prod(X, Sequence(Prod(X, b))), X = Sequence(b, card >= 1)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..18); # Zerinvary Lajos, Mar 26 2008
MATHEMATICA
Table[Fibonacci[n]*n!, {n, 0, 25}] (* Zerinvary Lajos, Jul 09 2009 *)
PROG
(PARI) a(n) = n!*fibonacci(n); \\ Michel Marcus, Oct 30 2015
(Magma) [Factorial(n)*Fibonacci(n): n in [0..30]]; // G. C. Greubel, Nov 20 2022
(SageMath) [fibonacci(n)*factorial(n) for n in range(31)] # G. C. Greubel, Nov 20 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Dec 24 1999
STATUS
approved