

A132881


a(n) is the number of isolated divisors of n.


14



1, 0, 2, 1, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 3, 2, 2, 4, 2, 2, 4, 3, 2, 4, 4, 2, 3, 2, 4, 4, 2, 4, 5, 2, 2, 4, 4, 2, 3, 2, 4, 6, 2, 2, 6, 3, 4, 4, 4, 2, 5, 4, 4, 4, 2, 2, 6, 2, 2, 6, 5, 4, 5, 2, 4, 4, 6, 2, 6, 2, 2, 6, 4, 4, 5, 2, 6, 5, 2, 2, 6, 4, 2, 4, 6, 2, 5, 4, 4, 4, 2, 4, 8, 2, 4, 6, 5, 2, 5, 2, 6, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A divisor d of n is isolated if neither d1 nor d+1 divides n.
The convention for 1 is that it is an isolated divisor iff n is odd.  Olivier Gérard, Sep 22 2007


LINKS

Ray Chandler, Table of n, a(n) for n=1..10000


FORMULA

a(n) = A000005(n)  A132747(n).


EXAMPLE

The positive divisors of 56 are 1,2,4,7,8,14,28,56. Of these, 1 and 2 are adjacent and 7 and 8 are adjacent. The isolated divisors are therefore 4,14,28,56. There are 4 of these, so a(56) = 4.


MAPLE

with(numtheory): a:=proc(n) local div, ISO, i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]1, div)=false and member(div[i]+1, div)=false then ISO:=`union`(ISO, {div[i]}) end if end do end proc; 1, 0, seq(nops(a(j)), j=3..105); # Emeric Deutsch, Oct 02 2007


MATHEMATICA

Table[Length@Select[Divisors[n], (#==1Mod[n, #1]>0)&&Mod[n, #+1]>0&], {n, 1, 200}]  Olivier Gérard Sep 22 2007.
id[n_]:=DivisorSigma[0, n]Length[Union[Flatten[Select[Partition[Divisors[ n], 2, 1], #[[2]]#[[1]]==1&]]]]; Array[id, 110] (* Harvey P. Dale, Jun 04 2018 *)


CROSSREFS

Cf. A132882, A132747.
Sequence in context: A178771 A289498 A193929 * A224702 A267263 A060130
Adjacent sequences: A132878 A132879 A132880 * A132882 A132883 A132884


KEYWORD

nonn


AUTHOR

Leroy Quet, Sep 03 2007


EXTENSIONS

More terms from Olivier Gérard, Sep 22 2007


STATUS

approved



