login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132881 a(n) is the number of isolated divisors of n. 14
1, 0, 2, 1, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 3, 2, 2, 4, 2, 2, 4, 3, 2, 4, 4, 2, 3, 2, 4, 4, 2, 4, 5, 2, 2, 4, 4, 2, 3, 2, 4, 6, 2, 2, 6, 3, 4, 4, 4, 2, 5, 4, 4, 4, 2, 2, 6, 2, 2, 6, 5, 4, 5, 2, 4, 4, 6, 2, 6, 2, 2, 6, 4, 4, 5, 2, 6, 5, 2, 2, 6, 4, 2, 4, 6, 2, 5, 4, 4, 4, 2, 4, 8, 2, 4, 6, 5, 2, 5, 2, 6, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A divisor d of n is isolated if neither d-1 nor d+1 divides n.

The convention for 1 is that it is an isolated divisor iff n is odd. - Olivier Gérard, Sep 22 2007

LINKS

Ray Chandler, Table of n, a(n) for n=1..10000

FORMULA

a(n) = A000005(n) - A132747(n).

EXAMPLE

The positive divisors of 56 are 1,2,4,7,8,14,28,56. Of these, 1 and 2 are adjacent and 7 and 8 are adjacent. The isolated divisors are therefore 4,14,28,56. There are 4 of these, so a(56) = 4.

MAPLE

with(numtheory): a:=proc(n) local div, ISO, i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1, div)=false and member(div[i]+1, div)=false then ISO:=`union`(ISO, {div[i]}) end if end do end proc; 1, 0, seq(nops(a(j)), j=3..105); # Emeric Deutsch, Oct 02 2007

MATHEMATICA

Table[Length@Select[Divisors[n], (#==1||Mod[n, #-1]>0)&&Mod[n, #+1]>0&], {n, 1, 200}] - Olivier Gérard Sep 22 2007.

id[n_]:=DivisorSigma[0, n]-Length[Union[Flatten[Select[Partition[Divisors[ n], 2, 1], #[[2]]-#[[1]]==1&]]]]; Array[id, 110] (* Harvey P. Dale, Jun 04 2018 *)

CROSSREFS

Cf. A132882, A132747.

Sequence in context: A178771 A289498 A193929 * A224702 A267263 A060130

Adjacent sequences:  A132878 A132879 A132880 * A132882 A132883 A132884

KEYWORD

nonn

AUTHOR

Leroy Quet, Sep 03 2007

EXTENSIONS

More terms from Olivier Gérard, Sep 22 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 15:08 EST 2019. Contains 329979 sequences. (Running on oeis4.)