login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007547 Number of steps to compute n-th prime in PRIMEGAME (slow version).
(Formerly M5075)
7
19, 69, 281, 710, 2375, 3893, 8102, 11361, 19268, 36981, 45680, 75417, 101354, 118093, 152344, 215797, 293897, 327571, 429229, 508284, 556494, 701008, 809381, 990746, 1274952, 1435957, 1531854, 1712701, 1820085, 2021938, 2835628, 3107393, 3549288, 3723821 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..34.

J. H. Conway, FRACTRAN: a simple universal programming language for arithmetic, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 4-26.

R. K. Guy, Conway's prime producing machine, Math. Mag. 56 (1983), no. 1, 26-33.

MAPLE

a:= proc(n) option remember; local l, p, m, k;

      l:= [17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23,

           77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1]:

      if n=1 then b(0):= 2; a(0):= 0 else a(n-1) fi;

      p:= b(n-1);

      for m do for k while not type(p*l[k], integer) do od;

               p:= p*l[k];

               if 2^ilog2(p)=p then break fi

      od:

      b(n):= p;

      m + a(n-1)

    end:

seq(a(n), n=1..10);  # Alois P. Heinz, May 01 2011

MATHEMATICA

Clear[a]; a[n_] := a[n] = Module[{l, p, m, k}, l = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1}; If[n == 1, b[0] = 2; a[0] = 0, a[n-1]]; p = b[n-1]; For[m=1, True, m++, For[k=1, !IntegerQ[p*l[[k]]], k++]; p = p*l[[k]]; If[2^Floor[Log[2, p]] == p, Break[]]]; b[n] = p; m + a[n-1]]; Table[Print[a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)

PROG

(Haskell)

import Data.List (elemIndices)

a007547 n = a007547_list !! n

a007547_list = tail $ elemIndices 2 $ map a006530 a007542_list

-- Reinhard Zumkeller, Jan 24 2012

CROSSREFS

Cf. A007542, A007546.

Cf. A006530, A034785.

Sequence in context: A300463 A204675 A007546 * A217081 A010007 A172078

Adjacent sequences:  A007544 A007545 A007546 * A007548 A007549 A007550

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Alois P. Heinz, May 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 19 02:36 EST 2018. Contains 318245 sequences. (Running on oeis4.)