login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006266 A continued cotangent.
(Formerly M2073)
16
2, 14, 2786, 21624372014, 10111847525912679844192131854786, 1033930953043290626825587838528711318150300040875029341893199068078185510802565166824630504014 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The next (6th) term is 280 digits long. - M. F. Hasler, Oct 06 2014

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..7

J. Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290.

FORMULA

From Artur Jasinski, Sep 24 2008: (Start)

a(n+1) = a(n)^3 + 3*a(n) with a(0)=2.

a(n) = round((1+sqrt(2))^(3^n)). [Corrected by M. F. Hasler, Oct 06 2014] (End)

MATHEMATICA

Table[Round[(1+Sqrt[2])^(3^n)], {n, 0, 10}] (* Artur Jasinski, Sep 24 2008 *)

LucasL[3^Range[0, 7], 2] (* G. C. Greubel, Mar 25 2022 *)

PROG

(PARI) a(n, s=2)=for(i=2, n, s*=(s^2+3)); s \\ M. F. Hasler, Oct 06 2014

(Magma) [Evaluate(DicksonFirst(3^n, -1), 2): n in [0..7]]; // G. C. Greubel, Mar 25 2022

(Sage) [lucas_number2(3^n, 2, -1) for n in (0..7)] # G. C. Greubel, Mar 25 2022

CROSSREFS

Cf. A006267. - Artur Jasinski, Sep 24 2008

Cf. A145451, A145452.

Sequence in context: A277288 A296412 A296410 * A284378 A106484 A228342

Adjacent sequences:  A006263 A006264 A006265 * A006267 A006268 A006269

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by M. F. Hasler, Oct 06 2014

Offset corrected by G. C. Greubel, Mar 25 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 16:13 EDT 2022. Contains 355029 sequences. (Running on oeis4.)