login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299274 Coordination sequence for "hal" 3D uniform tiling. 51
1, 4, 9, 18, 30, 47, 69, 91, 125, 160, 191, 238, 282, 331, 391, 448, 508, 582, 650, 709, 790, 877, 964, 1047, 1140, 1253, 1353, 1463, 1560, 1667, 1801, 1908, 2043, 2165, 2297, 2471, 2580, 2737, 2893, 3020, 3202, 3344, 3529, 3686, 3856, 4082, 4205, 4429, 4613, 4765, 5025, 5173, 5410 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This tiling is the f-tCO-trille tiling, described on page 298 of Symmetries of Things. (Note that there is a typo in the figure caption - tO should be tT.)- Chaim Goodman-Strauss, Feb 13 2018.

Other names for this tiling: In RCSR, HL42, 4/3/c8, 6^2.8^2 F-RD. Wells (page 146), refers to it as the 4-connected Fm3m net or 96(k) or H and L 4_2 (cubic) net, with a reference to Andreini Fig 23.

First 120 terms computed by Davide M. Proserpio using ToposPro.

REFERENCES

J. H. Conway, H. Burgiel and C. Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.

B. Gr├╝nbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #21.

A. F. Wells, Three-dimensional Nets and Polyhedra, Wiley, 1977

LINKS

Davide M. Proserpio, Table of n, a(n) for n = 0..120

V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied Topological Analysis of Crystal Structures with the Program Package ToposPro, Cryst. Growth Des. 2014, 14, 3576-3586.

Reticular Chemistry Structure Resource (RCSR), The hal tiling (or net)

FORMULA

From N. J. A. Sloane, Feb 13 2018 (Start):

Based on the 120 terms computed from the definition by Davide M. Proserpio, and using gfun, it appears that the g.f. is p(x)/q(x), where p(x) and q(x) are respectively

6*x^43 + 12*x^42 + 26*x^41 + 38*x^40 + 47*x^39 + 45*x^38 + 31*x^37 + 9*x^36 - 14*x^35 - 30*x^34 - 35*x^33 - 10*x^32 + 50*x^31 + 173*x^30 + 368*x^29 + 645*x^28 + 1006*x^27 + 1426*x^26 + 1889*x^25 + 2367*x^24 + 2835*x^23 + 3267*x^22 + 3630*x^21 + 3887*x^20 + 4038*x^19 + 4040*x^18 + 3931*x^17 + 3695*x^16 + 3379*x^15 + 2992*x^14 + 2567*x^13 + 2127*x^12 + 1701*x^11 + 1308*x^10 + 964*x^9 + 680*x^8 + 453*x^7 + 285*x^6 + 166*x^5 + 87*x^4 + 41*x^3 + 16*x^2 + 5*x + 1

and

(x + 1)*(x^2 + 1)*(x^6 + x^3 + 1)*(x^2 + x + 1)^2*(x^4 - x^3 + x^2 - x + 1)^2*(1 - x)^3*(x^4 + x^3 + x^2 + x + 1)^3.

The denominator q(x) can also be written as

(1-x^3)*(1-x^4)*(1-x^5)*(1-x^9)*(1-x^10)^2/((1-x)^3*(1+x)^2).

However, this g.f. is so much more complicated than the g.f.s for any of the other 27 3D uniform tilings, at present I am only willing to state it as a conjecture.

It should not be used to extend the sequence beyond 120 terms. (End)

CROSSREFS

See A299275 for partial sums.

The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Sequence in context: A244096 A008146 A038098 * A111384 A196039 A238091

Adjacent sequences:  A299271 A299272 A299273 * A299275 A299276 A299277

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 10 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 09:00 EST 2018. Contains 318049 sequences. (Running on oeis4.)