This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016957 a(n) = 6*n + 4. 42
 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 322, 328 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Number of 2 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i11 and n>1. - Sergey Kitaev, Nov 12 2004 If Y is a 4-subset of an n-set X then, for n>=4, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007 4th transversal numbers (or 4-transversal numbers): Numbers of the 4th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 4th column in the square array A057145. - Omar E. Pol, May 02 2008 a(n) is the maximum number such that there exists an edge coloring of the complete graph with a(n) vertices using n colors and every subgraph whose edges are of the same color (subgraph induced by edge color) is planar. - Srikanth K S, Dec 18 2010 Also numbers having two antecedents in the Collatz problem: 12*n+8 and 2*n+1 (respectively A017617(n) and A005408(n)). - Michel Lagneau, Dec 28 2012 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012 LINKS Tanya Khovanova, Recursive Sequences S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp. Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008 a(n) = A016789(n)*2. - Omar E. Pol, May 02 2008 A157176(a(n)) = A067412(n+1). - Reinhard Zumkeller, Feb 24 2009 a(n) = sqrt(A016958(n)). - Zerinvary Lajos, Jun 30 2009 a(n) = 2*(6*n+1)-a(n-1) (with a(0)=4). - Vincenzo Librandi, Nov 20 2010 a(n) = floor((sqrt(36*n^2-36*n+1)+6*n+1)/2). - Srikanth K S, Dec 18 2010 From Colin Barker, Jan 30 2012: (Start) G.f.: 2*(2+x)/(1-2*x+x^2). a(n) = 2*a(n-1)-a(n-2). (End) A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013 a(n) = 3 * A005408(n) + 1. - Fred Daniel Kline, Oct 24 2015 a(n) = A057145(n+2,4). - R. J. Mathar, Jul 28 2016 a(4*n+2) = 4 * a(n). - Zhandos Mambetaliyev, Sep 22 2018 MAPLE seq(6*n+4, n = 0 .. 50) # Matt C. Anderson, Jun 09 2017 MATHEMATICA Range[4, 1000, 6] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *) PROG (Maxima) makelist(6*n+4, n, 0, 30); /* Martin Ettl, Nov 12 2012 */ (Haskell) a016957 = (+ 4) . (* 6)  -- Reinhard Zumkeller, Jul 05 2013 (PARI) a(n)=6*n+4 \\ Charles R Greathouse IV, Jul 10 2016 CROSSREFS Cf. A008588, A016921, A016933, A016945, A016969, A000217, A017329, A057145, A139600, A139606, A016958. Sequence in context: A189932 A310533 A269960 * A109273 A294636 A295560 Adjacent sequences:  A016954 A016955 A016956 * A016958 A016959 A016960 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 07:00 EDT 2019. Contains 327995 sequences. (Running on oeis4.)