login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047397
Numbers that are congruent to {0, 1, 2, 6} mod 8.
1
0, 1, 2, 6, 8, 9, 10, 14, 16, 17, 18, 22, 24, 25, 26, 30, 32, 33, 34, 38, 40, 41, 42, 46, 48, 49, 50, 54, 56, 57, 58, 62, 64, 65, 66, 70, 72, 73, 74, 78, 80, 81, 82, 86, 88, 89, 90, 94, 96, 97, 98, 102, 104, 105, 106, 110, 112, 113, 114, 118, 120, 121, 122
OFFSET
1,3
FORMULA
G.f.: x^2*(1+x+4*x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-11+i^(2*n)+(1+2*i)*i^(-n)+(1-2*i)*i^n)/4, where i=sqrt(-1).
a(2k) = A047452(k), a(2k-1) = A047467(k). (End)
E.g.f.: (4 + 2*sin(x) + cos(x) + (4*x - 6)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/16 + log(2)/2 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 20 2021
MAPLE
A047397:=n->(8*n-11+I^(2*n)+(1+2*I)*I^(-n)+(1-2*I)*I^n)/4: seq(A047397(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
MATHEMATICA
Table[(8n-11+I^(2n)+(1+2*I)*I^(-n)+(1-2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 2, 6, 8}, 70] (* Harvey P. Dale, Dec 31 2017 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 2, 6]]; // Wesley Ivan Hurt, May 24 2016
CROSSREFS
Sequence in context: A342751 A120736 A130099 * A174331 A220116 A366059
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, May 24 2016
STATUS
approved