login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047395 Numbers that are congruent to {0, 2, 6} mod 8. 3
0, 2, 6, 8, 10, 14, 16, 18, 22, 24, 26, 30, 32, 34, 38, 40, 42, 46, 48, 50, 54, 56, 58, 62, 64, 66, 70, 72, 74, 78, 80, 82, 86, 88, 90, 94, 96, 98, 102, 104, 106, 110, 112, 114, 118, 120, 122, 126, 128, 130, 134, 136, 138, 142, 144, 146, 150, 152, 154, 158 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The members of this sequence together with the members of A017113 give the even numbers. - Wesley Ivan Hurt, Apr 01 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

From R. J. Mathar, Dec 05 2011: (Start)

G.f.: 2*x^2*(1+x)^2 / ((1+x+x^2)*(x-1)^2).

a(n) = 2 * A042965(n). (End)

From Wesley Ivan Hurt, Jun 13 2016: (Start)

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.

a(n) = 2*(12*n-12+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.

a(3k) = 8k-2, a(3k-1) = 8k-6, a(3k-2) = 8k-8. (End)

MAPLE

A047395:=n->2*floor((4*n-3)/3); seq(A047395(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014

MATHEMATICA

Table[2 Floor[(4 n - 3)/3], {n, 100}] (* Wesley Ivan Hurt, Apr 01 2014 *)

Flatten[Table[8n + {0, 2, 6}, {n, 0, 19}]] (* Alonso del Arte, Apr 11 2014 *)

LinearRecurrence[{1, 0, 1, -1}, {0, 2, 6, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 8 in [0, 2, 6]]; // Wesley Ivan Hurt, Jun 13 2016

CROSSREFS

Cf. A017113, A042965.

Sequence in context: A166447 A075332 A141105 * A284794 A187692 A036554

Adjacent sequences:  A047392 A047393 A047394 * A047396 A047397 A047398

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 20:24 EDT 2019. Contains 328273 sequences. (Running on oeis4.)