login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010751 Up 1, down 2, up 3, down 4, ... 0
0, 1, 0, -1, 0, 1, 2, 1, 0, -1, -2, -1, 0, 1, 2, 3, 2, 1, 0, -1, -2, -3, -2, -1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -3, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -5, -4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Table of n, a(n) for n=0..80.

FORMULA

a(n)=x+1-(sign(x(2x+1)-y(2y+1)))*(n-2x^2-3x-1) where x=floor((-1-sqrt(1+8n))/4), y=-floor((1-sqrt(1+8n))/4), sign(x)=abs(x)/x when x is not 0 and sign(0)=0, floor(x)=the greatest integer less than or equal to x, sqrt(x)=the principal square root of x and abs(x)=the absolute value (or magnitude) of x. - Mark Spindler, Mar 25 2004

MATHEMATICA

n=(the index); x = -1; y = 0; While[n != 0, While[y != x && n != 0, y--; n-- ]; While[y != -x && n != 0, n--; y++ ]; x-- ]; Print[ -y] provided by Gregory Puleo n = (the index); a = Floor[(-1 - Sqrt[1 + 8* n])/4]; b = -Floor[(1 - Sqrt[1 + 8*n])/4]; a + 1 - Sign[a*(2*a + 1) - b*(2*b + 1)]*(n - 2*a^2 - 3*a - 1) (provided by Mark Spindler)

CROSSREFS

Sequence in context: A054848 A194525 A065368 * A194523 A180714 A170959

Adjacent sequences:  A010748 A010749 A010750 * A010752 A010753 A010754

KEYWORD

sign

AUTHOR

David Berends (dave(AT)pgt.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 09:43 EST 2014. Contains 252241 sequences.