login
A010748
Shifts 4 places right under inverse binomial transform.
3
1, 1, 1, 1, 2, 7, 23, 65, 165, 398, 976, 2618, 7997, 27205, 97705, 355631, 1289746, 4662069, 16971775, 63150385, 243513801, 980670052, 4121324752, 17941655332, 80143362633, 364476958473, 1680382664145, 7847729640629, 37192941056498, 179431901258459
OFFSET
0,5
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
MAPLE
T:= proc(n, k) option remember; local j; if n<k then if n=0 then 1 else 0 fi else add(binomial(n-k, j) *T(j, k), j=0..n-k) fi end: a:= n-> T(n+4, 4): seq(a(n), n=0..30); # Alois P. Heinz, Sep 05 2008
MATHEMATICA
T[n_, k_] := T[n, k] = If[n<k, If[n==0, 1, 0], Sum[Binomial[n-k, j] *T[j, k], {j, 0, n-k}]]; a[n_] := T[n+4, 4]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A143983 (using a different offset).
Sequence in context: A281584 A230315 A228629 * A272819 A185250 A048496
KEYWORD
nonn,eigen
STATUS
approved