This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047212 Numbers that are congruent to {0, 2, 4} mod 5. 28
 0, 2, 4, 5, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 37, 39, 40, 42, 44, 45, 47, 49, 50, 52, 54, 55, 57, 59, 60, 62, 64, 65, 67, 69, 70, 72, 74, 75, 77, 79, 80, 82, 84, 85, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 104, 105, 107 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. G.f.: x^2*(2+2*x+x^2)/((1-x)^2*(1+x+x^2)). - Bruno Berselli, Mar 31 2011 a(n) = floor((5*n-3)/3). [Gary Detlefs, May 14 2011] a(n) = n + ceiling(2*(n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012 From Wesley Ivan Hurt, Jun 14 2016: (Start) a(n) = (15*n-12+3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9. a(3k) = 5k-1, a(3k-1) = 5k-3, a(3k-2) = 5k-5. (End) MAPLE A047212:=n->floor((5*n-3)/3); seq(A047212(n), n=1..100); # Wesley Ivan Hurt, Nov 25 2013 MATHEMATICA Select[Range[0, 200], MemberQ[{0, 2, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *) PROG (MAGMA) [n : n in [0..140] | n mod 5 in [0, 2, 4]]; // Vincenzo Librandi, Mar 31 2011 (MAGMA) &cat[[n, n+2, n+4]: n in [0..90 by 5]]; // Bruno Berselli, Mar 31 2011 (PARI) a(n)=n\3*5+[-1, 0, 2][n%3+1] \\ Charles R Greathouse IV, Mar 29 2012 CROSSREFS Cf. A047209, A047211. Sequence in context: A184656 A286989 A226720 * A121347 A106829 A190228 Adjacent sequences:  A047209 A047210 A047211 * A047213 A047214 A047215 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.