login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134824
Generated by reverse of Schroeder II o.g.f.
2
0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
OFFSET
0,1
COMMENTS
The o.g.f. S(x) for A001003 (Schroeder II) satisfies 2*S^2(x) + (1+x)*S(x) + x = 0.
Using the Lagrange series for y=S(x) with y=0+x*(y/A(y)) leads to the formula for Schroeder II numbers involving the Narayana triangle A001263. See the Narayana comment by B. Cloitre under A001003 and a multiple differentiation formula given there.
FORMULA
G.f.: x*(1-2*x)/(1-x).
a(0)=0,a(1)=1, a(n)=-1, n>=2.
CROSSREFS
If the initial 0 is omitted, we get A153881.
Sequence in context: A165574 A165581 A165586 * A165476 A165596 A226523
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved