This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091975 a(1) = 1; for n>1, a(n) = largest integer k such that the word a(1)a(2)...a(n-1) is of is of the form xy^(k_1)Y^(k_2)y^(k_3)Y^(k_4)...y^(k_(m-1))Y^(k_m) where y has positive length and Y=reverse(y) and k_1+k_2+k_3+...+k_m = k. 7
 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 4, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Here ^ denotes concatenation. This is similar to Gijswijt's sequence A090822 except that the 'y' block still counts when reversed. Thus 2 1 1 2 counts as the 2 blocks (21)(12) LINKS F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2. F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps]. CROSSREFS Cf. A090822, A091976, A092331-A092335. Sequence in context: A216460 A156755 A090822 * A091976 A267825 A151902 Adjacent sequences:  A091972 A091973 A091974 * A091976 A091977 A091978 KEYWORD nonn AUTHOR J. Taylor (integersfan(AT)yahoo.com), Mar 15 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.