OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
From Bruno Berselli, Dec 01 2010: (Start)
G.f.: x*(1+x+x^2+2*x^3+2*x^4) / ((1-x)^2*(1+x+x^2+x^3)).
a(n) = (14*n+(3*i-1)*(-i)^n-(3*i+1)*i^n-(-1)^n-13)/8, i=sqrt(-1). (End)
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
E.g.f.: (8 + 3*sin(x) - cos(x) + (7*x - 6)*sinh(x) + 7*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, Jun 04 2016
MAPLE
A047372:=n->(14*n+(3*I-1)*(-I)^n-(3*I+1)*I^n-(-1)^n-13)/8: seq(A047372(n), n=1..100); # Wesley Ivan Hurt, Jun 04 2016
MATHEMATICA
Flatten[7Range[0, 12]+n/.n->{1, 2, 3, 5}] (* Harvey P. Dale, Dec. 13, 2010 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [1, 2, 3, 5]]; // Wesley Ivan Hurt, Jun 04 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved