login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005893 Number of points on surface of tetrahedron: 2n^2 + 2 (coordination sequence for sodalite net) for n>0.
(Formerly M3380)
30
1, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of n-matchings of the wheel graph W_{2n} (n>0). Example: a(2)=10 because in the wheel W_4 (rectangle ABCD and spokes OA,OB,OC,OD) we have the 2-matchings: (AB, OC), (AB, OD), (BC, OA), (BC,OD), (CD,OA), (CD,OB), (DA,OB), (DA,OC), (AB,CD) and (BC,DA). - Emeric Deutsch, Dec 25 2004

For n>0 a(n) is the difference of two tetrahedral (or pyramidal) numbers: binomial(n+3,3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n) + A000292(n-4) = (n+1)(n+2)(n+3)/6 - (n-3)(n-2)(n-1)/6. - Alexander Adamchuk, May 20 2006

Equals binomial transform of [1, 3, 3, 1, -1, 1, -1, 1, -1, 1, ...]. Binomial transform of A005893 = nonzero terms of A053545: (1, 5, 19, 63, 191, ...). - Gary W. Adamson, Apr 28 2008

Disregarding the terms < 10, the sums of four consecutive triangular numbers (A000217). - Rick L. Shepherd, Sep 30 2009

Use a set of n concentric circles where n>=0 to divide the plane. a(n) is the maximal number of regions after the 2nd division. - Frank M Jackson, Sep 07 2011

Euler transform of length 4 sequence [4, 0, 0, -1]. - Michael Somos, May 14 2014

Also, growth series for affine Coxeter group (or affine Weyl group) A_3 or D_3. - N. J. A. Sloane, Jan 11 2016

For n>2 the generalized Pell's equation x^2-2*(a(n)-2)y^2 = (a(n)-4)^2 has a finite number of positive integer solutions. - Muniru A Asiru, Apr 19 2016

Union of A188896, A277449, {1,4}. - Muniru A Asiru, Nov 25 2016

REFERENCES

N. Bourbaki, Groups et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.

R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).

Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy.]

M. O'Keeffe, N-dimensional diamond, sodalite and rare sphere packings, Acta Cryst., A 47 (1991), 749-753.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558. DOI: 10.1021/ic00220a025.

Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).

FORMULA

G.f.: (1-x^4 )/(1-x)^4.

a(n) = A071619(n-1) + A071619(n) + A071619(n+1), n>0. - Ralf Stephan, Apr 26 2003

a(n) = binomial(n+3,3) - binomial(n-1,3) for n >= 1. - Mitch Harris, Jan 08 2008

a(n) = (n+1)^2 + (n-1)^2. - Benjamin Abramowitz, Apr 14 2009

a(n) = A000217(n-2) + A000217(n-1) + A000217(n) + A000217(n+1) for n >= 2. - Rick L. Shepherd, Sep 30 2009

a(n) = 2*n^2 - 0^n + 2. - Vincenzo Librandi, Sep 27 2011

a(0)=1, a(1)=4, a(2)=10, a(3)=20, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 26 2012

a(n) = A228643(n+1,2) for n > 0. - Reinhard Zumkeller, Aug 29 2013

a(n) = a(-n) for all n in Z. - Michael Somos, May 14 2014

For n>=2: a(n) = a(n-1) + 4*n - 2. - Bob Selcoe, Mar 22 2016

E.g.f.: -1 + 2*(1 + x + x^2)*exp(x). - Ilya Gutkovskiy, Apr 19

EXAMPLE

G.f. = 1 + 4*x + 10*x^2 + 20*x^3 + 34*x^4 + 52*x^5 + 74*x^6 + 100*x^7 + ...

MAPLE

A005893:=-(z+1)*(1+z^2)/(z-1)^3; # Simon Plouffe in his 1992 dissertation

MATHEMATICA

Join[{1}, Table[2*(n + 1)^2 + 2, {n, 0, 200}]] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *)

Join[{1}, LinearRecurrence[{3, -3, 1}, {4, 10, 20}, 50]] (* Harvey P. Dale, Feb 26 2012 *)

a[ n_] := SeriesCoefficient[ (1 - x^4) / (1 - x)^4, {x, 0, Abs@n}]; (* Michael Somos, May 14 2014 *)

a[ n_] := 2 n^2 + 2 - Boole[n == 0]; (* Michael Somos, May 14 2014 *)

PROG

(MAGMA) [2*n^2-0^n+2: n in [0..60]]; // Vincenzo Librandi, Sep 27 2011

(PARI) a(n)=2*n^2-0^n+2 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A000217, A000292, A053545, A206399.

Cf. similar sequences listed in A255843.

The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.

Sequence in context: A008141 A119651 A279015 * A008131 A008132 A008115

Adjacent sequences:  A005890 A005891 A005892 * A005894 A005895 A005896

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, Aug 22 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 23 01:23 EDT 2017. Contains 283901 sequences.