login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A298014 Coordination sequence of snub-632 tiling with respect to a trivalent node of type short-short-long. 22
1, 3, 9, 15, 18, 27, 37, 37, 44, 57, 54, 61, 77, 71, 78, 97, 88, 95, 117, 105, 112, 137, 122, 129, 157, 139, 146, 177, 156, 163, 197, 173, 180, 217, 190, 197, 237, 207, 214, 257, 224, 231, 277, 241, 248, 297, 258, 265, 317, 275, 282, 337, 292, 299, 357, 309, 316, 377, 326, 333, 397, 343, 350, 417, 360 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The snub-632 tiling in also called the fsz-d net. It is the dual of the 3.3.3.3.6 Archimedean tiling.

This is also called the "6-fold pentille" tiling in Conway, Burgiel, Goodman-Strauss, 2008, p. 288. - Felix Fröhlich, Jan 13 2018

REFERENCES

J. H. Conway, H. Burgiel and C. Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

C. Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, arXiv:1803.08530 [math.CO], March 2018.

N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]

Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).

FORMULA

For n >= 5, let k=floor(n/3). Then a(3*k) = 20*k-3, a(3*k+1)=17*k+3, a(3*k+2)=17*k+10.

G.f.: -(x+1)*(2*x^9+x^7-5*x^6-3*x^5-6*x^4-6*x^3-7*x^2-2*x-1)/((x-1)^2*(x^2+x+1)^2).

a(n) = 2*a(n-3) - a(n-6) for n>10. - Colin Barker, Jan 13 2018

MAPLE

f:=proc(n) local k, r, L; L:=[1, 3, 9, 15, 18];

if n<5 then L[n+1]

else k:=floor(n/3); r:=n-3*k;

  if r=0 then 20*k-3 elif r=1 then 17*k+3 else 17*k+10; fi;

fi; end;

[seq(f(n), n=0..80)];

MATHEMATICA

Join[{1, 3, 9, 15, 18}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {27, 37, 37, 44, 57, 54}, 60]] (* Jean-François Alcover, Apr 28 2018 *)

PROG

(PARI) Vec(-(x+1)*(2*x^9+x^7-5*x^6-3*x^5-6*x^4-6*x^3-7*x^2-2*x-1)/((x-1)^2*(x^2+x+1)^2) + O(x^60)) \\ Colin Barker, Jan 13 2018

CROSSREFS

Cf. A298015, A298016.

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Sequence in context: A310329 A310330 A071123 * A071347 A093414 A123998

Adjacent sequences:  A298011 A298012 A298013 * A298015 A298016 A298017

KEYWORD

nonn,easy

AUTHOR

Chaim Goodman-Strauss and N. J. A. Sloane, Jan 11 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 02:13 EST 2019. Contains 319320 sequences. (Running on oeis4.)