login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005894 Centered tetrahedral numbers.
(Formerly M3850)
68
1, 5, 15, 35, 69, 121, 195, 295, 425, 589, 791, 1035, 1325, 1665, 2059, 2511, 3025, 3605, 4255, 4979, 5781, 6665, 7635, 8695, 9849, 11101, 12455, 13915, 15485, 17169, 18971, 20895, 22945, 25125, 27439, 29891, 32485, 35225, 38115 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of (1,4,6,4,0,0,0,...). - Paul Barry, Jul 01 2003

If X is an n-set and Y a fixed 4-subset of X then a(n-4) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

Milan Janjic, Two Enumerative Functions

T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.

B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).

FORMULA

a(n) = (2*n + 1)*(n^2 + n + 3)/3.

G.f.: (1+x)*(1+x^2)/(1-x)^4.

a(n) = C(n, 0) + 4*C(n, 1) + 6*C(n, 2) + 4*C(n, 3). - Paul Barry, Jul 01 2003

a(n) is the sum of 4 consecutive tetrahedral (or pyramidal) numbers: C(n+3,3) = (n+1)*(n+2)*(n+3)/6 = A000292(n). a(n) = A000292(n-3) + A000292(n-2) + A000292(n-1) + A000292(n). - Alexander Adamchuk, May 20 2006

a(n) = binomial(n+3,n) + binomial(n+2,n-1) + binomial(n+1,n-2) + binomial(n,n-3). (modified by G. C. Greubel, Nov 30 2017)

a(n) = a(n-1) + 2*n^2 + 2, n>=1 (first differences A005893). - Vincenzo Librandi, Mar 27 2011

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=5, a(2)=15, a(3)=35. - Harvey P. Dale, Nov 03 2011

E.g.f.: (3 + 12*x + 9*x^2 + 2*x^3)*exp(x)/3. - G. C. Greubel, Nov 30 2017

MAPLE

A005894:=(z+1)*(1+z**2)/(z-1)**4; # Simon Plouffe in his 1992 dissertation

MATHEMATICA

Table[(2n+1)(n^2+n+3)/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 5, 15, 35}, 40] (* Harvey P. Dale, Nov 03 2011 *)

PROG

(PARI) a(n)=(2*n+1)*(n^2+n+3)/3 \\ Charles R Greathouse IV, Sep 24 2015

(MAGMA) [(2*n+1)*(n^2+n+3)/3: n in [0..30]]; // G. C. Greubel, Nov 30 2017

CROSSREFS

(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Cf. A000292.

The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Sequence in context: A061829 A063382 A069983 * A015622 A292103 A290447

Adjacent sequences:  A005891 A005892 A005893 * A005895 A005896 A005897

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 07:53 EST 2018. Contains 317225 sequences. (Running on oeis4.)