login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061829 Multiples of 5 having only odd digits. 5
5, 15, 35, 55, 75, 95, 115, 135, 155, 175, 195, 315, 335, 355, 375, 395, 515, 535, 555, 575, 595, 715, 735, 755, 775, 795, 915, 935, 955, 975, 995, 1115, 1135, 1155, 1175, 1195, 1315, 1335, 1355, 1375, 1395, 1515, 1535, 1555, 1575, 1595, 1715, 1735, 1755 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Index entries for 10-automatic sequences.

FORMULA

From Robert Israel, Jun 10 2018: (Start)

For n > 1, a(n) = 10*A014261(n-1) + 5.

a(5*n)   =  25 + 10*a(n).

a(5*n+1) =  45 + 10*a(n).

a(5*n+2) = -35 + 10*a(n+1).

a(5*n+3) = -15 + 10*a(n+1).

a(5*n+4) =   5 + 10*a(n+1).

G.f. g(x) satisfies g(x) = -25 - 40*x + 5*(5+9*x-7*x^2-3*x^3+x^4)/(1-x^5) + 10*(1-x^5)*g(x^5)/(x^3*(1-x)).

(End)

EXAMPLE

135 = 5*27 is a term having all odd digits.

MAPLE

L[1]:= [5]:

for n from 2 to 4 do

  L[n]:= [seq(op(map(`+`, L[n-1], i*10^(n-1))), i=1..9, 2)]

od:

map(op, [seq(L[i], i=1..4)]); # Robert Israel, Jun 10 2018

MATHEMATICA

Select[5 Range[370], Select[IntegerDigits[#], EvenQ]=={}&]  (* Harvey P. Dale, Feb 07 2011 *)

PROG

(PARI) is(n)=n%10==5 && #setintersect(Set(digits(n)), [0, 2, 4, 6, 8])==0 \\ Charles R Greathouse IV, Feb 15 2017

CROSSREFS

Cf. A014261.

Sequence in context: A051807 A034052 A233348 * A063382 A069983 A005894

Adjacent sequences:  A061826 A061827 A061828 * A061830 A061831 A061832

KEYWORD

nonn,base,easy

AUTHOR

Amarnath Murthy, May 29 2001

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 15:48 EDT 2018. Contains 316236 sequences. (Running on oeis4.)