This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063488 a(n) = (2*n-1)*(n^2 -n +2)/2. 20
 1, 6, 20, 49, 99, 176, 286, 435, 629, 874, 1176, 1541, 1975, 2484, 3074, 3751, 4521, 5390, 6364, 7449, 8651, 9976, 11430, 13019, 14749, 16626, 18656, 20845, 23199, 25724, 28426, 31311, 34385, 37654, 41124, 44801, 48691, 52800, 57134 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sum of two consecutive terms of A006003(n) = n*(n^2+1)/2. a(n) = A006003(n-1) + A006003(n). - Alexander Adamchuk, Jun 03 2006 If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 Milan Janjic, Two Enumerative Functions M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013. T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10). Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA G.f.: (1 + x)*(1 + x + x^2)/(1 - x)^4. - Jaume Oliver Lafont, Aug 30 2009 a(n) = A000217(A000217(n)) - A000217(A000217(n-2)). - Bruno Berselli, Oct 14 2016 E.g.f.: (-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017 MATHEMATICA Table[(2 n - 1) (n^2 - n + 2)/2, {n, 1, 40}] (* Bruno Berselli, Oct 14 2016 *) LinearRecurence[{4, -6, 4, -1}, {1, 6, 20, 49}, 50] (* G. C. Greubel, Dec 01 2017 *) PROG (PARI) { for (n=1, 1000, write("b063488.txt", n, " ", (2*n - 1)*(n^2 - n + 2)/2) ) } \\ Harry J. Smith, Aug 23 2009 (PARI) x='x+O('x^30); Vec(serlaplace((-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017 (MAGMA) [(2*n-1)*(n^2 -n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017 CROSSREFS 1/12*t*n*(2*n^2 - 3*n + 1) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496. Cf. A000217, A006003. Partial sums of A005918. Sequence in context: A203552 A050768 A161438 * A299292 A162209 A161699 Adjacent sequences:  A063485 A063486 A063487 * A063489 A063490 A063491 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Aug 01 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 06:54 EDT 2019. Contains 327995 sequences. (Running on oeis4.)