login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299256 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579). 51
1, 6, 18, 40, 72, 112, 162, 220, 288, 364, 450, 544, 648, 760, 882, 1012, 1152, 1300, 1458, 1624, 1800, 1984, 2178, 2380, 2592, 2812, 3042, 3280, 3528, 3784, 4050, 4324, 4608, 4900, 5202, 5512, 5832, 6160, 6498, 6844, 7200, 7564, 7938, 8320, 8712, 9112, 9522, 9940, 10368, 10804, 11250, 11704 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

B. Gr├╝nbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #18.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Reticular Chemistry Structure Resource (RCSR), The kag tiling (or net)

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

G.f.: (1 + 2*x)*(x^4 - 2*x^3 - 2*x^2 - 2*x - 1) / ((x - 1)^3*(x + 1)).

From Colin Barker, Feb 09 2018: (Start)

a(n) = 9*n^2 / 2 for n>1.

a(n) = (9*n^2 - 1) / 2 for n>1.

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5.

(End)

MAPLE

seq(coeff(series((1+2*x)*(x^4-2*x^3-2*x^2-2*x-1)/((x-1)^3*(1+x)), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 26 2018

MATHEMATICA

Join[{1, 6}, LinearRecurrence[{2, 0, -2, 1}, {18, 40, 72, 112}, 50]] (* Vincenzo Librandi, Oct 26 2018 *)

PROG

(PARI) Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 09 2018

(MAGMA) [1, 6] cat [9*n^2 div 2: n in [2..50]]; // Vincenzo Librandi, Oct 26 2018

(GAP) a:=[18, 40, 72, 112];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; Concatenation([1, 6], a); # Muniru A Asiru, Oct 26 2018

CROSSREFS

Cf. A008579.

For partial sums see A299262.

The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Sequence in context: A035489 A219143 A122061 * A002411 A023658 A059834

Adjacent sequences:  A299253 A299254 A299255 * A299257 A299258 A299259

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Feb 07 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 23:51 EST 2018. Contains 317275 sequences. (Running on oeis4.)