login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063492 a(n) = (2*n - 1)*(11*n^2 - 11*n + 6)/6. 18
1, 14, 60, 161, 339, 616, 1014, 1555, 2261, 3154, 4256, 5589, 7175, 9036, 11194, 13671, 16489, 19670, 23236, 27209, 31611, 36464, 41790, 47611, 53949, 60826, 68264, 76285, 84911, 94164, 104066, 114639, 125905, 137886, 150604, 164081, 178339, 193400, 209286, 226019 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000

T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: x*(1+x)*(1 + 9*x + x^2)/(1-x)^4. - Colin Barker, Apr 24 2012

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Dec 16 2015

E.g.f.: (-6 + 12*x + 33*x^2 + 22*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

MAPLE

A063492:=n->(2*n - 1)*(11*n^2 - 11*n + 6)/6: seq(A063492(n), n=1..50); # Wesley Ivan Hurt, Dec 16 2015

MATHEMATICA

Table[(2*n-1)*(11*n^2-11*n+6)/6, {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 18 2008 *)

LinearRecurrence[{4, -6, 4, -1}, {1, 14, 60, 161}, 40] (* Vincenzo Librandi, Dec 16 2015 *)

PROG

(PARI) { for (n=1, 1000, write("b063492.txt", n, " ", (2*n - 1)*(11*n^2 - 11*n + 6)/6) ) } \\ Harry J. Smith, Aug 23 2009

(PARI) Vec(x*(1+x)*(1+9*x+x^2)/(1-x)^4 + O(x^100)) \\ Altug Alkan, Dec 16 2015

(Python)

A063492_list, m = [], [22, -11, 2, 1]

for _ in range(10**2):

    A063492_list.append(m[-1])

    for i in range(3):

        m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015

(MAGMA) [(2*n-1)*(11*n^2-11*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015

CROSSREFS

1/12*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Sequence in context: A261282 A158058 A100171 * A051799 A164540 A140184

Adjacent sequences:  A063489 A063490 A063491 * A063493 A063494 A063495

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Aug 01 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 17:37 EST 2019. Contains 329970 sequences. (Running on oeis4.)