The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299262 Partial sums of A299256. 51
 1, 7, 25, 65, 137, 249, 411, 631, 919, 1283, 1733, 2277, 2925, 3685, 4567, 5579, 6731, 8031, 9489, 11113, 12913, 14897, 17075, 19455, 22047, 24859, 27901, 31181, 34709, 38493, 42543, 46867, 51475, 56375, 61577, 67089, 72921, 79081, 85579, 92423, 99623, 107187, 115125, 123445, 132157, 141269, 150791, 160731, 171099 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1). FORMULA From Colin Barker, Feb 09 2018: (Start) G.f.: (1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^4*(1 + x)). a(n) = (6*n^3 + 9*n^2 + 2*n + 12) / 4 for n>0 and even. a(n) = (6*n^3 + 9*n^2 + 2*n + 11) / 4 for n odd. a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>5. (End) PROG (PARI) Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^4*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 09 2018 CROSSREFS Cf. A299256. The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview. Sequence in context: A155305 A155290 A056685 * A001296 A000970 A247620 Adjacent sequences:  A299259 A299260 A299261 * A299263 A299264 A299265 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Feb 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 11:49 EST 2020. Contains 332279 sequences. (Running on oeis4.)