login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299262 Partial sums of A299256. 51
1, 7, 25, 65, 137, 249, 411, 631, 919, 1283, 1733, 2277, 2925, 3685, 4567, 5579, 6731, 8031, 9489, 11113, 12913, 14897, 17075, 19455, 22047, 24859, 27901, 31181, 34709, 38493, 42543, 46867, 51475, 56375, 61577, 67089, 72921, 79081, 85579, 92423, 99623, 107187, 115125, 123445, 132157, 141269, 150791, 160731, 171099 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).

FORMULA

From Colin Barker, Feb 09 2018: (Start)

G.f.: (1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^4*(1 + x)).

a(n) = (6*n^3 + 9*n^2 + 2*n + 12) / 4 for n>0 and even.

a(n) = (6*n^3 + 9*n^2 + 2*n + 11) / 4 for n odd.

a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>5.

(End)

PROG

(PARI) Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^4*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 09 2018

CROSSREFS

Cf. A299256.

The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Sequence in context: A155305 A155290 A056685 * A001296 A000970 A247620

Adjacent sequences:  A299259 A299260 A299261 * A299263 A299264 A299265

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Feb 07 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 13:15 EST 2018. Contains 317149 sequences. (Running on oeis4.)