This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299290 Partial sums of A299289. 51
 1, 9, 37, 97, 203, 367, 603, 923, 1341, 1869, 2521, 3309, 4247, 5347, 6623, 8087, 9753, 11633, 13741, 16089, 18691, 21559, 24707, 28147, 31893, 35957, 40353, 45093, 50191, 55659, 61511, 67759, 74417, 81497, 89013, 96977, 105403, 114303, 123691 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA Conjectures from Colin Barker, Feb 11 2018: (Start) G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^4*(1 + x)). a(n) = (12 + 34*n + 39*n^2 + 26*n^3) / 12 for n even. a(n) = (9 + 34*n + 39*n^2 + 26*n^3) / 12 for n odd. a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4. (End) CROSSREFS Cf. A299289. The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e:  A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview. Sequence in context: A022276 A171443 A320696 * A304290 A244245 A288116 Adjacent sequences:  A299287 A299288 A299289 * A299291 A299292 A299293 KEYWORD nonn AUTHOR N. J. A. Sloane, Feb 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 04:26 EDT 2019. Contains 328291 sequences. (Running on oeis4.)