login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063495 a(n) = (2*n-1)*(5*n^2-5*n+2)/2. 17
1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, 12312, 15254, 18631, 22473, 26810, 31672, 37089, 43091, 49708, 56970, 64907, 73549, 82926, 93068, 104005, 115767, 128384, 141886, 156303, 171665, 188002, 205344 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Harry J. Smith, Table of n, a(n) for n=1..1000

T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).

Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).

FORMULA

From Harvey P. Dale, Dec 18 2011: (Start)

a(1)=1, a(2)=18, a(3)=80, a(4)=217, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) - a(n-4).

G.f.: (x^3+14*x^2+14*x+1)/(1-x)^4. (End)

E.g.f.: (-2 + 4*x + 15*x^2 + 10*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017

MATHEMATICA

Table[(2n-1)(5n^2-5n+2)/2, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 18, 80, 217}, 40] (* Harvey P. Dale, Dec 18 2011 *)

PROG

(PARI) { for (n=1, 1000, write("b063495.txt", n, " ", (2*n - 1)*(5*n^2 - 5*n + 2)/2) ) } \\ Harry J. Smith, Aug 23 2009

(PARI) x='x+O('x^30); Vec(serlaplace((-2+4*x+15*x^2+10*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017

(MAGMA) [(2*n-1)*(5*n^2-5*n+2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017

CROSSREFS

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Sequence in context: A197886 A039453 A219144 * A264850 A039408 A043231

Adjacent sequences:  A063492 A063493 A063494 * A063496 A063497 A063498

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Aug 01 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 18 20:19 EST 2018. Contains 297865 sequences.