login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059905 Index of first half of decomposition of integers into pairs based on A000695. 16
0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7, 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 12, 13, 14, 15, 14, 15, 12, 13, 12, 13, 14 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

One coordinate of a recursive non-self intersecting walk on the square lattice Z^2.

LINKS

Peter Kagey, Table of n, a(n) for n = 0..8192

FORMULA

n = A000695(a(n))+2*A000695(A059906(n))

To get a(n), write n as Sum b_j*2^j, then a(n)=Sum b_(2j)*2^j. - Vladimir Shevelev, Nov 13 2008

a(n) = Sum_k>=0 {A030308(n,k)*A077957(k)}. - Philippe Deléham, Oct 18 2011

G.f.: (1-x)^(-1) * Sum_{j>=0} 2^j*x^(2^j)/(1+x^(2^j)). - Robert Israel, Aug 12 2015

EXAMPLE

A000695(a(14))+2*A000695(A059906(14)) = A000695(2)+2*A000695(3) = 4+2*5 = 14.

If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(n)=b_0+b_2*2+b_4*2^2=5. - Vladimir Shevelev, Nov 13 2008

MAPLE

f:= proc(n) local L; L:= convert(n, base, 2); add(L[2*i+1]*2^i, i=0..floor((nops(L)-1)/2)) end;

map(f, [$0..256]); # Robert Israel, Aug 12 2015

PROG

(Ruby)

def a(n)

  (0..n.bit_length/2).to_a.map { |i| (n >> 2 * i & 1) << i}.reduce(:+)

end # Peter Kagey, Aug 12 2015

CROSSREFS

Cf. A000695, A059906.

Sequence in context: A105436 A266911 A244075 * A014836 A197262 A085032

Adjacent sequences:  A059902 A059903 A059904 * A059906 A059907 A059908

KEYWORD

easy,nonn,look

AUTHOR

Marc LeBrun, Feb 07 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 23 05:54 EDT 2016. Contains 274947 sequences.