login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047318
Numbers that are congruent to {0, 1, 2, 4, 5, 6} mod 7.
2
0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 83
OFFSET
1,3
COMMENTS
Complement of A017017. - Michel Marcus, Sep 10 2015
FORMULA
G.f.: x^2*(1+x+2*x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Dec 03 2011
From Wesley Ivan Hurt, Sep 10 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + floor((n-4)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-39+3*cos(n*Pi)-4*sqrt(3)*cos((1+4*n)*Pi/6)+12*sin((1-2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
MAPLE
for n from 0 to 200 do if n mod 7 <> 3 then printf(`%d, `, n) fi: od:
A047318:=n->n+floor((n-4)/6): seq(A047318(n), n=1..100); # Wesley Ivan Hurt, Sep 10 2015
MATHEMATICA
Table[n+Floor[(n-4)/6], {n, 100}] (* Wesley Ivan Hurt, Sep 10 2015 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 4, 5, 6, 7}, 100] (* Vincenzo Librandi, Sep 11 2015 *)
DeleteCases[Range[0, 100], _?(Mod[#, 7]==3&)] (* Harvey P. Dale, May 07 2016 *)
PROG
(Magma) [n+Floor((n-4)/6) : n in [1..100]]; // Wesley Ivan Hurt, Sep 10 2015
(Magma) [n : n in [0..140] | n mod 7 in [0, 1, 2, 4, 5, 6]]; // Vincenzo Librandi, Sep 11 2015
CROSSREFS
Cf. A017017.
Sequence in context: A294662 A183301 A308065 * A057904 A188397 A027925
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Feb 19 2001
STATUS
approved