login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047321 Numbers that are congruent to {1, 5, 6} mod 7. 1
1, 5, 6, 8, 12, 13, 15, 19, 20, 22, 26, 27, 29, 33, 34, 36, 40, 41, 43, 47, 48, 50, 54, 55, 57, 61, 62, 64, 68, 69, 71, 75, 76, 78, 82, 83, 85, 89, 90, 92, 96, 97, 99, 103, 104, 106, 110, 111, 113, 117, 118, 120, 124, 125, 127, 131, 132, 134, 138, 139, 141 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..61.

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

G.f.: x*(1+4*x+x^2+x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 03 2011

From Wesley Ivan Hurt, Jun 07 2016: (Start)

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.

a(n) = (21*n-6-3*cos(2*n*Pi/3)-5*sqrt(3)*sin(2*n*Pi/3))/9.

a(3k) = 7k-1, a(3k-1) = 7k-2, a(3k-2) = 7k-6. (End)

MAPLE

A047321:=n->(21*n-6-3*cos(2*n*Pi/3)-5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047321(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016

MATHEMATICA

Select[Range[0, 150], MemberQ[{1, 5, 6}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 07 2016 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 7 in [1, 5, 6]]; // Wesley Ivan Hurt, Jun 07 2016

CROSSREFS

Sequence in context: A030742 A048583 A169622 * A033158 A193569 A032721

Adjacent sequences:  A047318 A047319 A047320 * A047322 A047323 A047324

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 11:39 EST 2016. Contains 279001 sequences.