login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007494 Numbers that are congruent to 0 or 2 mod 3. 54
0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The map n -> a(n) (where a(n) = 3n/2 if n even or (3n+1)/2 if n odd) was studied by Mahler, in connection with "Z-numbers" and later by Flatto. One question was whether, iterating from an initial integer, one eventually encountered an iterate = 1 (mod 4). - Jeff Lagarias, Sep 23 2002

Partial sums of 0,2,1,2,1,2,1,2,1,... . - Paul Barry, Aug 18 2007

A145389(a(n)) <> 1. - Reinhard Zumkeller, Oct 10 2008

a(n) = A002943(n) - A173511(n). - Reinhard Zumkeller, Feb 20 2010

a(n) = numbers k such that antiharmonic mean of the first k positive integers is not integer. A169609(a(n-1)) = 3. See A146535 and A169609. Complement of A016777. - Jaroslav Krizek, May 28 2010

Range of A173732. - Reinhard Zumkeller, Apr 29 2012

Number of partitions of 6n into two odd parts. - Wesley Ivan Hurt, Nov 15 2014

Numbers m such that 3 divides A000217(m). - Bruno Berselli, Aug 04 2017

REFERENCES

L. Flatto, Z-numbers and beta-transformations, in Symbolic dynamics and its applications (New Haven, CT, 1991), 181-201, Contemp. Math., 135, Amer. Math. Soc., Providence, RI, 1992.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1002

A. Mader, The Use of Experimental Mathematics in the Classroom, in Interesting Mathematical Problems in Sciences and Everyday Life - 2011.

K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), pp. 313-321.

P. Sabinin and M. G. Stone, Transforming n-gons by Folding the Plane, Amer. Math. Monthly 102, 620-627, 1995.

Eric Weisstein's World of Mathematics, Folding

R. G. Wilson, V, Notes with attachment

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = 3*n/2 if n even, otherwise (3*n+1)/2.

If u(1)=0, u(n) = n + floor(u(n-1)/3), then a(n-1) = u(n). - Benoit Cloitre, Nov 26 2002

G.f.: x*(x+2)/((1-x)^2*(1+x)). - Ralf Stephan, Apr 13 2002

a(n) = 3*floor(n/2) + 2*(n mod 2) = A032766(n) + A000035(n). - Reinhard Zumkeller, Apr 04 2005

a(n) = (6*n+1)/4 - (-1)^n/4; a(n) = Sum_{k=0..n-1} (1 + (-1)^(k/2)*cos(k*Pi/2)). - Paul Barry, Aug 18 2007

a(n) = 3*n - a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010

a(n) = Sum_{k>=0} A030308(n,k)*A042950(k). - Philippe Deléham, Oct 17 2011

a(n) = n + ceiling(n/2). - Arkadiusz Wesolowski, Sep 18 2012

a(n) = 2n - floor(n/2) = floor((3n+1)/2) = n + (n + (n mod 2))/2. - Wesley Ivan Hurt, Oct 19 2013

a(n) = A000217(n+1) - A099392(n+1). - Bui Quang Tuan, Mar 27 2015

a(n) = n + floor(n/2) + (n mod 2). - Bruno Berselli, Apr 04 2016

a(n) = Sum_{i=1..n} numerator(2/i). - Wesley Ivan Hurt, Feb 26 2017

a(n) = Sum_{k=0..n-1} Sum_{i=0..k} C(i,k)+(-1)^(k-i). - Wesley Ivan Hurt, Sep 20 2017

MAPLE

a[0]:=0:a[1]:=2:for n from 2 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=0..71); # Zerinvary Lajos, Mar 16 2008

A007494:=n->floor((3*n+1)/2); seq(A007494(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013

MATHEMATICA

Flatten[{#, #+2}&/@(3Range[0, 40])] (* Harvey P. Dale, May 15 2011 *)

Table[2n - Floor[n/2], {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)

PROG

(PARI) a(n)=n+(n+1)>>1 \\ Charles R Greathouse IV, Jul 25 2011

(MAGMA) [(6*n+1)/4-(-1)^n/4: n in [0..80]]; // Vincenzo Librandi, Aug 20 2011

(Haskell)

a007494 =  flip div 2 . (+ 1) . (* 3) -- Reinhard Zumkeller, Dec 12 2014

CROSSREFS

Cf. A000217, A001651, A032766, A035361, A063574, A132462.

Complement of A016777.

Range of A002517.

Cf. A274406. [Bruno Berselli, Jun 26 2016]

Sequence in context: A267528 A294732 A045506 * A258575 A052490 A248562

Adjacent sequences:  A007491 A007492 A007493 * A007495 A007496 A007497

KEYWORD

nonn,easy

AUTHOR

Christopher Lam Cham Kee (Topher(AT)CyberDude.Com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 22:27 EST 2018. Contains 299662 sequences. (Running on oeis4.)