login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048878 Generalized Pellian with second term of 9. 4
1, 9, 37, 157, 665, 2817, 11933, 50549, 214129, 907065, 3842389, 16276621, 68948873, 292072113, 1237237325, 5241021413, 22201322977, 94046313321, 398386576261, 1687592618365, 7148757049721, 30282620817249 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..1584

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (4,1).

FORMULA

a(n) = ( (7+sqrt(5))(2+sqrt(5))^n - (7-sqrt(5))(2-sqrt(5))^n )/2*sqrt(5).

G.f.: (1+5*x)/(1-4*x-x^2). [Philippe Deléham, Nov 03 2008]

EXAMPLE

a(n) = 4a(n-1) + a(n-2); a(0)=1, a(1)=9.

MAPLE

with(combinat): a:=n->5*fibonacci(n-1, 4)+fibonacci(n, 4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008

MATHEMATICA

LinearRecurrence[{4, 1}, {1, 9}, 31] (* or *) CoefficientList[ Series[ (1+5x)/(1-4x-x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jul 12 2011 *)

PROG

(PARI) { default(realprecision, 2000); for (n=0, 2000, a=round(((7+sqrt(5))*(2+sqrt(5))^n - (7-sqrt(5))*(2-sqrt(5))^n )/10*sqrt(5)); if (a > 10^(10^3 - 6), break); write("b048878.txt", n, " ", a); ); } \\ Harry J. Smith, May 31 2009

CROSSREFS

Cf. A015448, A001077, A001076, A033887.

Sequence in context: A257448 A288415 A026620 * A246315 A232250 A201441

Adjacent sequences:  A048875 A048876 A048877 * A048879 A048880 A048881

KEYWORD

easy,nice,nonn

AUTHOR

Barry E. Williams

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 14:26 EST 2017. Contains 294894 sequences.