This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048878 Generalized Pellian with second term of 9. 4
 1, 9, 37, 157, 665, 2817, 11933, 50549, 214129, 907065, 3842389, 16276621, 68948873, 292072113, 1237237325, 5241021413, 22201322977, 94046313321, 398386576261, 1687592618365, 7148757049721, 30282620817249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Harry J. Smith, Table of n, a(n) for n = 0..1584 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (4,1). FORMULA a(n) = ( (7+sqrt(5))(2+sqrt(5))^n - (7-sqrt(5))(2-sqrt(5))^n )/2*sqrt(5). G.f.: (1+5*x)/(1-4*x-x^2). [Philippe Deléham, Nov 03 2008] EXAMPLE a(n) = 4a(n-1) + a(n-2); a(0)=1, a(1)=9. MAPLE with(combinat): a:=n->5*fibonacci(n-1, 4)+fibonacci(n, 4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008 MATHEMATICA LinearRecurrence[{4, 1}, {1, 9}, 31] (* or *) CoefficientList[ Series[ (1+5x)/(1-4x-x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jul 12 2011 *) PROG (PARI) { default(realprecision, 2000); for (n=0, 2000, a=round(((7+sqrt(5))*(2+sqrt(5))^n - (7-sqrt(5))*(2-sqrt(5))^n )/10*sqrt(5)); if (a > 10^(10^3 - 6), break); write("b048878.txt", n, " ", a); ); } \\ Harry J. Smith, May 31 2009 CROSSREFS Cf. A015448, A001077, A001076, A033887. Sequence in context: A257448 A288415 A026620 * A246315 A232250 A201441 Adjacent sequences:  A048875 A048876 A048877 * A048879 A048880 A048881 KEYWORD easy,nice,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.