login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048877 a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=8. 2
1, 8, 33, 140, 593, 2512, 10641, 45076, 190945, 808856, 3426369, 14514332, 61483697, 260449120, 1103280177, 4673569828, 19797559489, 83863807784, 355252790625, 1504874970284, 6374752671761 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generalized Pellian with second term of 8.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (4,1).

FORMULA

a(n) = ((6+sqrt(5))*(2+sqrt(5))^n - (6-sqrt(5))*(2-sqrt(5))^n )/(2*sqrt(5)).

G.f.: (1+4*x)/(1-4*x-x^2). - Philippe Deléham, Nov 03 2008

a(n)=4*a(n-1) + a(n-2); a(0)=1, a(1)=8.

MAPLE

with(combinat): a:=n->4*fibonacci(n-1, 4)+fibonacci(n, 4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008

MATHEMATICA

CoefficientList[Series[(1+4x)/(1-4x-x^2), {x, 0, 20}], x]  (* Harvey P. Dale, Mar 30 2011 *)

LinearRecurrence[{4, 1}, {1, 8}, 30] (* Harvey P. Dale, Nov 03 2013 *)

PROG

(Haskell)

a048877 n = a048877_list !! n

a048877_list = 1 : 8 : zipWith (+) a048877_list (map (* 4) $ tail a048877_list)

-- Reinhard Zumkeller, May 01 2013

CROSSREFS

Cf. A015448, A001076, A001077, A033887.

Sequence in context: A222346 A283544 A212404 * A220590 A001407 A005398

Adjacent sequences:  A048874 A048875 A048876 * A048878 A048879 A048880

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 30 04:27 EDT 2017. Contains 287305 sequences.