login
A047413
Numbers that are congruent to {3, 4, 6} mod 8.
1
3, 4, 6, 11, 12, 14, 19, 20, 22, 27, 28, 30, 35, 36, 38, 43, 44, 46, 51, 52, 54, 59, 60, 62, 67, 68, 70, 75, 76, 78, 83, 84, 86, 91, 92, 94, 99, 100, 102, 107, 108, 110, 115, 116, 118, 123, 124, 126, 131, 132, 134, 139, 140, 142, 147, 148, 150, 155, 156, 158
OFFSET
1,1
FORMULA
G.f.: x*(3+x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-9-9*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-4, a(3k-2) = 8k-5. (End)
MAPLE
A047413:=n->(24*n-9-9*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047413(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{3, 4, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3, 4, 6]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A320688 A352734 A275418 * A331191 A294917 A115018
KEYWORD
nonn,easy
STATUS
approved