The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006368 The "amusical permutation" of the nonnegative numbers: a(2n)=3n, a(4n+1)=3n+1, a(4n-1)=3n-1. (Formerly M2249) 33
 0, 1, 3, 2, 6, 4, 9, 5, 12, 7, 15, 8, 18, 10, 21, 11, 24, 13, 27, 14, 30, 16, 33, 17, 36, 19, 39, 20, 42, 22, 45, 23, 48, 25, 51, 26, 54, 28, 57, 29, 60, 31, 63, 32, 66, 34, 69, 35, 72, 37, 75, 38, 78, 40, 81, 41, 84, 43, 87, 44, 90, 46, 93, 47, 96, 49, 99, 50, 102, 52, 105, 53 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A permutation of the nonnegative integers. There is a famous open question concerning the closed trajectories under this map - see A217218, A028393, A028394, and Conway (2013). This is lodumo_3 of A131743. - Philippe Deléham, Oct 24 2011 Multiples of 3 interspersed with numbers other than multiples of 3. - Harvey P. Dale, Dec 16 2011 For n>0: a(2n+1) is the smallest number missing from {a(0),...a(2n-1)} and a(2n) = a(2n-1) + a(2n+1). - Bob Selcoe, May 24 2017 REFERENCES J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder, CO, 1972, pp. 49-52. R. K. Guy, Unsolved Problems in Number Theory, E17. J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 5. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS R. Zumkeller, Table of n, a(n) for n = 0..10000 David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and J. Int. Seq. 18 (2015) 15.6.7.. J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198. [Introduces the name "amusical permutation".] Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 S. Schreiber & N. J. A. Sloane, Correspondence, 1980 Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1). FORMULA If n even, then a(n) = 3n/2; otherwise, a(n) = nearest integer to 3n/4. G.f.: x(1+3x+x^2+3x^3+x^4)/((1-x^2)(1-x^4)). - Michael Somos, Jul 23 2002 a(n)=-a(-n). a(n)=A006369(n)-A168223(n); A168221(n)=a(a(n)); A168222(a(n))=A006369(n). - Reinhard Zumkeller, Nov 20 2009 a(0)=0, a(1)=1, a(2)=3, a(3)=2, a(4)=6, a(5)=4, a(n)=a(n-2)+a(n-4)- a(n-6). - Harvey P. Dale, Dec 16 2011 a(n) = ((n+1) mod 2) * (3n/2) + (n mod 2) * round(3n/4). - Wesley Ivan Hurt, Nov 23 2013 EXAMPLE 9 is odd so a(9)=round(3*9/4)=round(7-1/4)=7. MAPLE f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi; # N. J. A. Sloane, Jan 21 2011 A006368:=(1+3*z+z**2+3*z**3+z**4)/(1+z**2)/(z-1)**2/(1+z)**2; # [Conjectured (correctly, except for the offset) by Simon Plouffe in his 1992 dissertation.] MATHEMATICA Table[If[EvenQ[n], (3n)/2, Floor[(3n+2)/4]], {n, 0, 80}] (* or *) LinearRecurrence[ {0, 1, 0, 1, 0, -1}, {0, 1, 3, 2, 6, 4}, 80] (* Harvey P. Dale, Dec 16 2011 *) PROG (PARI) a(n)=(3*n+n%2)\(2+n%2*2) (PARI) a(n)=if(n%2, round(3*n/4), 3*n/2) (Haskell) a006368 n | u' == 0   = 3 * u           | otherwise = 3 * v + (v' + 1) `div` 2           where (u, u') = divMod n 2; (v, v') = divMod n 4 -- Reinhard Zumkeller, Apr 18 2012 CROSSREFS Inverse mapping to A006369. Cf. A028393, A028294, A028397, A180853, A180864, A182205, A217218. Trajectories under A006368 and A006369: A180853, A217218, A185590, A180864, A028393, A028394, A094328, A094329, A028396, A028395, A217729, A182205, A223083-A223088, A185589, A185590. Sequence in context: A257903 A257877 A257910 * A202845 A202838 A105354 Adjacent sequences:  A006365 A006366 A006367 * A006369 A006370 A006371 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS Edited by Michael Somos, Jul 23 2002 I replaced the definition with the original definition of Conway and Guy. - N. J. A. Sloane, Oct 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 13:50 EDT 2021. Contains 343884 sequences. (Running on oeis4.)