The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047585 Numbers that are congruent to {0, 1, 3, 5, 6, 7} mod 8. 1
 0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 67, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1). FORMULA From Chai Wah Wu, Jun 10 2016: (Start) a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6). G.f.: x^2*(x^4 + x^2 + x + 1)/((x - 1)^2*(x^2 - x + 1)*(x^2 + x + 1 ) ). (End) a(n) = (12*n - 3*sqrt(3)*sin(Pi*n/3) + sqrt(3)*sin(2*Pi*n/3) - 9)/9. - Ilya Gutkovskiy, Jun 11 2016 a(3k) = 8k-1, a(3k-1) = 8k-2, a(3k-2) = 8k-3, a(3k-3) = 8k-5, a(3k-4) = 8k-7, a(3k-5) = 8k-8. - Wesley Ivan Hurt, Jun 16 2016 MAPLE A047585:=n->(12*n - 3*sqrt(3)*sin(Pi*n/3) + sqrt(3)*sin(2*Pi*n/3) - 9)/9: seq(A047585(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016 MATHEMATICA Select[Range[0, 100], MemberQ[{0, 1, 3, 5, 6, 7}, Mod[#, 8]]&] (* or *) Complement[Range[0, 100], Flatten[Range[{2, 4}, 100, 8]]] (* Harvey P. Dale, May 01 2012 *) CoefficientList[Series[x (x^4 + x^2 + x + 1) / ((x - 1)^2 (x^2 - x + 1) (x^2 + x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 18 2016 *) PROG (MAGMA) [n : n in [0..100] | n mod 8 in [0, 1, 3, 5, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016 CROSSREFS Sequence in context: A039092 A289178 A212450 * A288224 A039063 A266114 Adjacent sequences:  A047582 A047583 A047584 * A047586 A047587 A047588 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 15:50 EDT 2020. Contains 336202 sequences. (Running on oeis4.)