login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047215 Numbers that are congruent to {0, 2} mod 5. 33
0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of partitions of 5n into exactly 2 parts. - Colin Barker, Mar 23 2015

Numbers k such that k^2/5 + k*(k + 1)/5 = k*(2*k + 1)/5 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

LINKS

Table of n, a(n) for n=0..63.

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = floor(5*n/2).

From R. J. Mathar, Sep 23 2008: (Start)

G.f.: x*(2 + 3*x)/((1 + x)*(1 - x)^2).

a(n) = 5*n/2 +((-1)^n-1)/4.

a(n+1)-a(n) = A010693(n+1). (End)

a(n) = 5*n - a(n-1) - 8 with a(1)=0. - Vincenzo Librandi, Aug 05 2010

a(n+1) = Sum_{k>=0} A030308(n,k)*A084215(k+1). - Philippe Deléham, Oct 17 2011

a(n) = 2*n + floor(n/2). - Arkadiusz Wesolowski, Sep 19 2012

MATHEMATICA

Table[Floor[5 n/2], {n, 0, 100}] (* or *) LinearRecurrence[{1, 1, -1}, {0, 2, 5}, 101] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)

PROG

(PARI) a(n)=5*n\2 \\ Charles R Greathouse IV, Oct 17 2011

CROSSREFS

Different from A038126.

Sequence in context: A022849 A075328 A038126 * A330067 A059536 A030193

Adjacent sequences:  A047212 A047213 A047214 * A047216 A047217 A047218

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 19:21 EST 2020. Contains 332047 sequences. (Running on oeis4.)