OFFSET
0,2
COMMENTS
Number of partitions of 5n into exactly 2 parts. - Colin Barker, Mar 23 2015
Numbers k such that k^2/5 + k*(k + 1)/5 = k*(2*k + 1)/5 is a nonnegative integer. - Bruno Berselli, Feb 14 2017
LINKS
David Lovler, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = floor(5*n/2).
From R. J. Mathar, Sep 23 2008: (Start)
G.f.: x*(2 + 3*x)/((1 + x)*(1 - x)^2).
a(n) = 5*n/2 + ((-1)^n-1)/4.
a(n+1) - a(n) = A010693(n+1). (End)
a(n) = 5*n - a(n-1) - 8 with a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = 2*n + floor(n/2). - Arkadiusz Wesolowski, Sep 19 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 - sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: (5*x*exp(x) - sinh(x))/2. - David Lovler, Aug 22 2022
MATHEMATICA
Table[Floor[5 n/2], {n, 0, 100}] (* or *) LinearRecurrence[{1, 1, -1}, {0, 2, 5}, 101] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
PROG
(PARI) a(n)=5*n\2 \\ Charles R Greathouse IV, Oct 17 2011
(Magma) [(5*n - (n mod 2))/2: n in [1..100]]; // G. C. Greubel, Jun 23 2024
(SageMath) [int(5*n//2) for n in range(1, 101)] # G. C. Greubel, Jun 23 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved