This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047524 Numbers that are congruent to {2, 7} mod 8. 18
 2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, 47, 50, 55, 58, 63, 66, 71, 74, 79, 82, 87, 90, 95, 98, 103, 106, 111, 114, 119, 122, 127, 130, 135, 138, 143, 146, 151, 154, 159, 162, 167, 170, 175, 178, 183, 186, 191, 194, 199, 202, 207, 210, 215, 218, 223, 226, 231, 234 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A195605 is a subsequence. - Bruno Berselli, Sep 21 2011 LINKS Muniru A Asiru, Table of n, a(n) for n = 1..5000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = 8*n - a(n-1) - 7, n > 1. - Vincenzo Librandi, Aug 06 2010 From R. J. Mathar, Mar 22 2011: (Start) a(n) = 4*n - 3/2 + (-1)^n/2. G.f.: x*(2+5*x+x^2) / ( (1+x)*(x-1)^2 ). (End) From Franck Maminirina Ramaharo, Aug 06 2018: (Start) a(n) = 4*n - (n mod 2) - 1. a(n) = A047615(n) + 2. a(2*n) = A004771(n-1). a(2*n-1) = A017089(n-1). E.g.f.: ((8*x - 3)*exp(x) + exp(-x) + 2)/2. (End) a(n) = a(n-1) + a(n-2) - a(n-3). - Muniru A Asiru, Aug 06 2018 MAPLE seq(coeff(series(x*(2+5*x+x^2)/((1+x)*(1-x)^2), x, n+1), x, n), n=1..60); # Muniru A Asiru, Aug 06 2018 MATHEMATICA Select[Range[300], MemberQ[{2, 7}, Mod[#, 8]]&] (* or *) LinearRecurrence[ {1, 1, -1}, {2, 7, 10}, 60] (* Harvey P. Dale, Nov 05 2017 *) CoefficientList[ Series[(x^2 + 5x + 2)/((x - 1)^2 (x + 1)), {x, 0, 60}], x] (* Robert G. Wilson v, Aug 07 2018 *) PROG (Maxima) makelist(4*n - mod(n, 2) - 1, n, 1, 100); /* Franck Maminirina Ramaharo, Aug 06 2018 */ (PARI) is(n) = #setintersect([n%8], [2, 7]) > 0 \\ Felix FrÃ¶hlich, Aug 06 2018 (GAP) Filtered([0..250], n->n mod 8=2 or n mod 8=7); # Muniru A Asiru, Aug 06 2018 CROSSREFS Cf. A047398, A047461, A047452, A047470, A047535, A047615, A047617. Sequence in context: A085303 A304799 A022886 * A190447 A190375 A066097 Adjacent sequences:  A047521 A047522 A047523 * A047525 A047526 A047527 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Vincenzo Librandi, Aug 06 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)