login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047361
Numbers that are congruent to {0, 1, 2, 3} mod 7.
2
0, 1, 2, 3, 7, 8, 9, 10, 14, 15, 16, 17, 21, 22, 23, 24, 28, 29, 30, 31, 35, 36, 37, 38, 42, 43, 44, 45, 49, 50, 51, 52, 56, 57, 58, 59, 63, 64, 65, 66, 70, 71, 72, 73, 77, 78, 79, 80, 84, 85, 86, 87, 91, 92, 93, 94, 98, 99, 100, 101, 105, 106, 107, 108, 112
OFFSET
1,3
COMMENTS
Nonnegative m for which floor(2*m/7) = 2*floor(m/7). [Bruno Berselli, Dec 03 2015]
FORMULA
a(n) = 7*floor(n/4) + (n mod 4), with offset 0 and a(0) = 0. - Gary Detlefs, Mar 09 2010
G.f.: x^2*(1+x+x^2+4*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-23-3*i^(2*n)-(3-3*i)*i^(-n)-(3+3*i)*i^n)/8, where i=sqrt(-1).
a(2k) = A047356(k), a(2k-1) = A047352(k). (End)
E.g.f.: (16 + 3*(sin(x) - cos(x)) + (7*x - 10)*sinh(x) + (7*x - 13)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016
MAPLE
A047361:=n->(14*n-23-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8: seq(A047361(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
MATHEMATICA
Flatten[#+{0, 1, 2, 3}&/@(7*Range[0, 20])] (* Harvey P. Dale, Jan 17 2013 *)
PROG
(PARI) concat(0, Vec(x^2*(1+x+x^2+4*x^3)/((1+x)*(x^2+1)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Dec 09 2015
(Magma) [n : n in [0..150] | n mod 7 in [0..3]]; // Wesley Ivan Hurt, May 23 2016
CROSSREFS
Sequence in context: A344624 A154432 A251391 * A037461 A284514 A268398
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, May 23 2016
STATUS
approved